Hive数据倾斜的原因及主要解决方法

数据倾斜产生的原因

数据倾斜的原因很大部分是join倾斜和聚合倾斜两大类

Hive倾斜之group by聚合倾斜

  • 原因:
    • 分组的维度过少,每个维度的值过多,导致处理某值的reduce耗时很久;
    • 对一些类型统计的时候某种类型的数据量特别多,其他的数据类型特别少。当按照类型进行group by的时候,会将相同的group by字段的reduce任务需要的数据拉取到同一个节点进行聚合,而当其中每一组的数据量过大时,会出现其他组的计算已经完成而这个reduce还没有计算完成,其他的节点一直等待这个节点的任务执行完成,所以会一直看到map 100% reduce99%的情况;
  • 解决方法:
    • set hive.map.aggr=true;
    • set hive.groupby.skewindata=true;
  • 原理:
    • hive.map.aggr=true 这个配置代表开启map端聚合;
    • hive.groupby.skewindata=true,当选项设定为true,生成的查询计划会有两个MR Job。当第一个MR Job中,Map的输出结果结合会随机分布到Reduce中,每个Reduce做部分聚合操作,并输出结果。这样处理的结果是相同的Group By Key有可能被分发到不同的Reduce中,从而达到负载均衡的目的。第二个MR Job再根据预处理的数据结果按照Group By Key分布到reduce中,这个过程可以保证相同的key被分到同一个reduce中,最后完成最终的聚合操作。

Hive倾斜之Map和Reduce

Hive数据倾斜是指在Hive查询过程中,某些任务的处理时间比其他任务长得多,导致整个查询变得很慢。这通常是由于数据分布不均匀造成的。下面介绍一些常用的Hive数据倾斜解决方法: 1. 动态分区 动态分区是一种Hive优化技术,它可以将数据分布到不同的分区中,以避免数据倾斜。在动态分区中,Hive会根据查询条件自动创建分区,并将数据插入到对应的分区中。这样可以使数据分布更加均匀,减少数据倾斜问题。 2. 桶 桶是一种将数据分布到多个文件中的技术。在Hive中,可以使用桶来将数据分布到多个文件中,以避免数据倾斜。桶的原理是先将数据按照某个字段进行哈希,然后将哈希值相同的数据插入到同一个文件中。这样可以让数据更加均匀地分布到多个文件中,减少数据倾斜问题。 3. 调整并行度 调整并行度是指调整Hive查询的任务数,以避免数据倾斜。当某些任务的处理时间比其他任务长得多时,可以尝试将任务数增加或减少,以重新分配负载。这样可以使查询更加均衡,减少数据倾斜问题。 4. 重构SQL 如果上述方法无法解决数据倾斜问题,可以尝试重构SQL。根据具体的查询需求,可以尝试改变查询条件或者使用其他方式查询数据。这样可以减少查询的数据量,避免数据倾斜问题。 总之,Hive数据倾斜是一个常见的问题,但是通过一些优化技术和合理的调整,可以有效地解决这个问题
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值