基于知识图谱的仿真想定智能生成方法

源自:指挥与控制学院

作者:安靖   司光亚  周杰  韩旭

摘 要

仿真想定的开发,存在着专业性强、定制要求高、迁移性差等问题. 针对这一系列问题, 设计并实现一种基于知识图谱的仿真想定智能生成方法. 通过基于强化学习的全局特征链接多源仿真模型实体, 构建了知识图谱;基于该知识图谱, 设计了适用于仿真模型匹配的实体对齐算法和基于文档对象模型(document object model,DOM)的脚本生成方法,实现仿真想定的智能映射,以“立体投送”行动为实例展开实验, 实验结果表明:生成的仿真想定能够驱动仿真系统按照预定行动时序运行, 方法有效.

关键词

 仿真想定  知识图谱  强化学习  实体对齐

1 仿真想定的定义和形式化描述

2 知识图谱的构建

2.1   领域知识本体建模

2.2 多源仿真模型实体链接

3 基于知识图谱实体对齐的仿真想定匹配映射

3.1   实体对齐

3.2  脚本生成

4 仿真想定生成实例验证和分析

5 结论

声明:公众号转载的文章及图片出于非商业性的教育和科研目的供大家参考和探讨,并不意味着支持其观点或证实其内容的真实性。版权归原作者所有,如转载稿涉及版权等问题,请立即联系我们删除。

“人工智能技术与咨询”    发布

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
智能问诊系统是基于知识图谱的一种应用,通过构建和利用知识图谱来实现对用户健康问题的自动问诊。知识图谱是一种以图形结构存储和表示知识的方式,其中包含了各种实体、属性和关系的信息。 在智能问诊系统中,知识图谱被用来存储医学领域的知识,例如疾病、症状、药物等。系统通过用户提供的症状和相关信息,利用知识图谱中的信息进行推理和匹配,最终给出可能的诊断结果或建议。 智能问诊系统可以通过对用户输入的症状进行匹配,找出与之相关的疾病,并根据疾病的特征和规则进行推理,生成可能的诊断结果。同时,系统还可以结合用户的个人信息、病史等因素进行综合分析,提供个性化的建议和治疗方案。 基于知识图谱智能问诊系统具有以下优点: 1. 知识丰富:知识图谱中存储了大量医学领域的知识,可以提供准确、全面的信息。 2. 推理能力:系统可以通过对知识图谱中的信息进行推理,帮助用户找到可能的诊断结果。 3. 个性化:系统可以结合用户的个人信息和病史,提供个性化的建议和治疗方案。 4. 实时更新:知识图谱可以不断更新和完善,保持与最新医学知识的同步。 总体而言,基于知识图谱智能问诊系统可以提供快速、准确的健康咨询和诊断服务,为用户提供便捷的健康管理方案。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

龙腾亚太

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值