【QA必看】大模型微调原理及PyTorch操作流程

                                                              图 1  模型微调-Fun-tuning

微调(Fine-tuning): 迁移学习的一种具体实现方式,对预训练模型的参数进行进一步的调整和优化,以适应新的任务。

迁移学习和微调英文可参考这篇:

Transfer learning & fine-tuning (keras.io)

PyTorch作为一款广泛使用的深度学习框架,为模型微调提供了强大的支持和丰富的工具。本文将深入探讨PyTorch中的模型微调技术,包括其原理、实现步骤以及实际应用。

1、模型微调的基本原理

      模型微调是指在预训练模型的基础上,根据特定任务的需求对模型进行微小的调整,以适应新的数据分布。预训练模型通常在大规模无标注数据集上训练而成,包含了丰富的特征和语义信息。通过微调,我们可以利用这些已学习的特征和信息,快速提高模型在新任务上的性能。

为什么需要微调

为什么需要微调

微调最重要的价值就是:减少对新数据的需求和降低训练成本

微调(Fun-tuning)可以帮助我们更好地利用预训练模型的知识,加速和优化新任务的训练过程,同时减少对新数据的需求和降低训练成本。

                       

          图2 降低训练成本

  • 减少对新数据的需求  从头开始训练一个大型神经网络通常需要大量的数据和计算资源,而在实际应用中,我们可能只有有限的数据集。 通过微调预训练模型,我们可以利用预训练模型已经学到的知识, 减少对新数据的需求,从而在小数据集上获得更好的性能。
  • 降低训练成本:由于我们只需要调整预训练模型的部分参数,而不是从头开始训练整个模型,因此可以大大减少训练时间和所需的计算资源。 这使得微调成为一种 高效且经济的解决方案,尤其适用于资源有限的环境。

             

                                                                图3   Fun-tuning  Value

微调的 原理: 利用已知的网络结构和已知的网络参数,修改output层为我们自己的层,微调最后一层前的若干层的参数。

这样可以有效利用深度神经网络强大的泛化能力,又免去了设计复杂的模型以及耗时良久的训练。因此,Fine-tuning是当数据量不足时的一个比较合适的选择。

2、PyTorch中的模型微调操作流程

在PyTorch中实现模型微调,通常按照以下步骤流程进行:

1. 选择合适的预训练模型

根据任务类型选择合适的预训练模型是第一步。PyTorch的torchvisiontransformers库提供了大量的预训练模型,如ResNet、BERT等,适用于图像分类、自然语言处理等多种任务。

2. 加载预训练模型

使用PyTorch的加载函数(如torch.load())将预训练模型加载到内存中。例如,加载一个预训练的ResNet模型:

import torchvision.models as models
model = models.resnet18(pretrained=True)
3. 修改模型结构(可选)

根据任务需求,可能需要修改模型的结构,如增加或减少层数、改变激活函数等。在微调过程中,通常保持大部分层的结构不变,仅对最后几层进行修改。

4. 冻结部分层(可选)

为了保持预训练模型的特征提取能力,可以选择冻结部分层的参数,使其在微调过程中不参与更新。这通常通过设置requires_grad=False来实现。

for param in model.parameters():
param.requires_grad = False
# 然后,只对需要微调的层设置requires_grad=True
5. 定义损失函数和优化器

根据任务类型选择合适的损失函数(如交叉熵损失)和优化器(如SGD、Adam)。由于我们可能只微调部分参数,因此优化器应仅包含这些参数的引用。

criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters_to_train(), lr=0.001)
6. 加载训练数据

使用PyTorch的数据加载函数(如torch.utils.data.DataLoader)将训练数据加载到内存中,并进行适当的预处理。

7. 训练模型

使用定义的损失函数和优化器对模型进行训练。在训练过程中,通过反向传播算法更新模型的参数。

for epoch in range(num_epochs):
for inputs, labels in train_loader:
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
8. 评估模型

使用测试数据对训练好的模型进行评估,以确定模型的性能。

假设我们有一个关于椅子分类的任务,但训练数据相对较少。我们可以利用在ImageNet上预训练的ResNet模型进行微调。首先,加载预训练模型,并修改最后的全连接层以匹配椅子类别的数量。然后,冻结大部分层的参数,只训练最后几层。最后,使用椅子分类的训练数据进行微调,并使用测试数据评估模型的性能。

       模型微调是深度学习中的一种重要技术,可以显著提高模型在新任务上的性能。PyTorch提供了丰富的工具和资源来支持模型微调,包括预训练模型、损失函数、优化器等。

       通过上述步骤操作流程,QA测试同学可以轻松地在PyTorch中实现模型微调,并将其应用于实际大模型测试工作中,有些情况测试训练不准的场景,我们自己就能进行微调来达到训练效果,不必要每次都要找研发的同学亲自动手。

                              

### 回答1: PyTorch 是一个基于 Python 的科学计算库,它有着一些非常方便的特性,使得它成为了深度学习领域的开发者们的首选。而 pkuseg 是一个由北大自然语言处理实验室开发的中文分词工具,是目前效果最好的中文分词工具之一。在使用 PyTorch 微调 pkuseg 模型时,我们需要先了解一些基本的原理。 pkuseg 模型是基于 BERT 进行 fine-tune 的,因此我们需要先加载预训练好的 BERT 模型。然后,我们需要将 pkuseg 的数据转换成 BERT 的输入格式,即 tokenization 和 padding。接着,我们可以将这些数据输入到已经加载好的 BERT 模型中,并微调一些特定的层,使其适应我们的任务。最后,我们可以使用训练好的模型进行分词。 具体步骤如下: 1. 加载预训练的 BERT 模型 ```python from transformers import BertModel, BertTokenizer bert_model = BertModel.from_pretrained('bert-base-chinese') tokenizer = BertTokenizer.from_pretrained('bert-base-chinese') ``` 2. 加载 pkuseg 数据集并转换为 BERT 的输入格式 ```python from pkuseg import pkuseg seg = pkuseg() text = '我爱自然语言处理' tokens = tokenizer.tokenize(text) # 将 pkuseg 分词后的结果转换为 BERT 的输入格式 input_ids = tokenizer.convert_tokens_to_ids(tokens) input_ids = tokenizer.build_inputs_with_special_tokens(input_ids) segment_ids = [0] * len(input_ids) input_mask = [1] * len(input_ids) # padding max_length = 128 padding_length = max_length - len(input_ids) if padding_length > 0: input_ids += [0] * padding_length segment_ids += [0] * padding_length input_mask += [0] * padding_length else: input_ids = input_ids[:max_length] segment_ids = segment_ids[:max_length] input_mask = input_mask[:max_length] # 转换为 PyTorch Tensor input_ids = torch.tensor([input_ids]) segment_ids = torch.tensor([segment_ids]) input_mask = torch.tensor([input_mask]) ``` 3. 微调 pkuseg 模型 ```python import torch.nn as nn import torch.optim as optim class PkusegModel(nn.Module): def __init__(self, bert_model): super().__init__() self.bert = bert_model self.fc = nn.Linear(768, 4) # 分类数为4 def forward(self, input_ids, segment_ids, input_mask): _, pooled_output = self.bert(input_ids, token_type_ids=segment_ids, attention_mask=input_mask) output = self.fc(pooled_output) return output model = PkusegModel(bert_model) criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.0001) # 训练模型 for epoch in range(10): running_loss = 0.0 for inputs, labels in dataloader: optimizer.zero_grad() outputs = model(*inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() print('Epoch: %d, Loss: %.4f' % (epoch+1, running_loss/len(dataloader))) ``` 4. 使用训练好的模型进行分词 ```python def pkuseg_tokenize(text): tokens = tokenizer.tokenize(text) input_ids = tokenizer.convert_tokens_to_ids(tokens) input_ids = tokenizer.build_inputs_with_special_tokens(input_ids) segment_ids = [0] * len(input_ids) input_mask = [1] * len(input_ids) input_ids = torch.tensor([input_ids]) segment_ids = torch.tensor([segment_ids]) input_mask = torch.tensor([input_mask]) with torch.no_grad(): outputs = model(input_ids, segment_ids, input_mask) _, predicted = torch.max(outputs.data, 1) predicted = predicted.cpu().numpy().tolist() labels = [tokenizer.convert_ids_to_tokens([i])[0] for i in predicted] words = [] for i in range(len(tokens)): if labels[i].startswith('B'): words.append(tokens[i]) elif labels[i].startswith('I'): words[-1] += tokens[i][2:] else: words.append(tokens[i]) return words text = '我爱自然语言处理' words = pkuseg_tokenize(text) print(words) ``` 以上就是使用 PyTorch 微调 pkuseg 模型的基本原理和步骤。 ### 回答2: PyTorch是一个开源的机器学习框架,可以用于搭建、训练和调优深度学习模型。而pkuseg是一个基于深度学习的中文分词工具,它能够将一段中文文本进行分词处理。使用PyTorch微调pkuseg模型原理如下: 1. 准备数据集:为了微调pkuseg模型,首先需要准备一个包含大量中文文本的数据集。这个数据集应该包含已经正确切分好的分词结果。 2. 加载模型:使用PyTorch加载pkuseg的预训练模型。这个预训练模型是在大规模的中文语料库上进行训练得到的,可以实现良好的中文分词效果。 3. 冻结参数:为了避免已经训练好的权重被破坏,我们需要冻结模型中的一些参数,例如卷积层的权重。冻结这些参数后,我们只对一部分需要微调的层进行训练。 4. 定义微调层:在pkuseg模型中,我们可以选择微调一些层,例如最后几个全连接层。这些层的参数可以通过训练进行调优,以适应特定的分词任务。 5. 更新梯度:使用已准备好的数据集,通过反向传播算法更新微调层的权重。根据模型的输出和标签数据之间的差距,调整权重来最小化损失函数。 6. 评估性能:在微调过程中,使用一部分数据作为验证集,用于评估模型的性能。可以使用一些指标,如Precision、Recall和F1-score来衡量模型的分词效果。 7. 迭代微调:如果模型的性能不够理想,可以多次迭代进行微调,使用不同的参数组合和数据子集。通过反复迭代的方式,逐渐提高模型在特定分词任务上的性能。 通过以上步骤,我们可以使用PyTorch对pkuseg模型进行微调,使其适应特定的中文分词任务,提高分词的准确性和性能。 ### 回答3: 使用PyTorch微调pkuseg模型原理如下: 首先,pkuseg是一个基于深度学习的中文分词工具,采用了LSTM-CRF模型微调是指在已经训练好的模型基础上,通过修改部分参数或者加入新的数据集来进行再训练,以提高模型性能。 在进行微调pkuseg模型时,首先需要加载预训练的模型参数。这可以通过使用PyTorch提供的模型加载函数进行实现。加载模型参数后,可以固定部分参数,如LSTM层的参数,以防止它们在微调过程中被修改。 接下来,我们可以选择一些新的数据集来进行微调。这些数据集通常是与原始数据集相似或相关的,例如来自相同领域或主题的数据。通过将新数据集与原始数据集进行合并,可以扩大训练数据规模,有助于提高模型的泛化能力。 在微调过程中,可以使用PyTorch提供的优化器,如随机梯度下降(SGD),来更新模型的参数。可以通过设定不同的学习率、权重衰减等来调整优化器的参数,以达到更好的微调效果。 微调过程中,需要选择合适的损失函数来度量模型的训练误差,通常选择交叉熵损失函数。在每个训练迭代中,通过计算损失函数的梯度,更新模型中可训练参数的数值,以降低损失函数的值。 微调过程需要进行多个训练迭代,直到达到预定的停止条件为止。在每个迭代中,可以通过计算模型在验证集上的性能指标,如准确率、召回率等,来评估模型的表现,并根据评估结果进行调整。 最后,可以保存微调后的模型参数,以备后续使用。这些模型参数可以用于分词任务,通过对输入文本进行切分,得到分词结果。 综上所述,使用PyTorch微调pkuseg模型原理就是加载预训练模型参数,固定部分参数,选择合适的损失函数和优化器,通过迭代更新模型参数,评估模型性能,并保存微调后的模型参数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值