关于诡辩--偷换概念

 

读《诡辩术逻辑分析》:

 

辩论的三大要素:

(1) 概念

(2) 判断

(3) 推理

判断由概念组成,推理由判断组成,因此概念是思维的细胞。逻辑学要求我们在思维过程中,力求做到概念明确,判断恰当,推理合乎逻辑。如果在概念出了问题,就会做出错误的判断和推理。(可用苏格拉底三段论来比照理解)

 

 

很多都是偷换概念来达到诡辩的目的,

 

例子:

 

任何人都是自私的

 

有一种观点认为,任何人都是自私的。论证如下:一个人要求实现个人的利益和满足自己的需要就是自私,就是个人主义, 而任何人都不可能没有个人的利益;所以,任何人都是自私的,“自私”是人的本质,世界上不可能有大公无私的人。

 

上面使用了如下的三段论:

凡要求个人利益的都是自私的,任何人都是要求个人利益的,所以任何人都是自私的。

 

这个三段论的推理形式正确,但结论错误。

根据逻辑规律可判定必有错误的前提。这个错误的前提不是小前提而是大前提。因为在历史唯物主义看来,个人利益的满足是每个人生存和发展的保障,没有个人的利益,不但个体失去了生存的条件,而且社会也失掉其存在的基础。所以,个人利益人皆有之,即“任何人都是要求个人利益的”这个小前提是正确的,那么错误的就是大前提。大前提错在何处?就错在它把“要求个人利益”和“自私”混为一谈。因为“自私”或“个人主义”的概念有其确定的涵义,它指的是一种“损人利己”、“损公肥私”,把个人利益置于他人或集体利益之上的思想行为。而我们所提倡的“大公无私”中的“无私”,指的是无“自私自利”之私,决不是否定一个人通过合法的诚实劳动获得的正当利益。可见,一些人在论证“任何人都是自私的”,“不可能有大公无私”的错误观点时,其诡辩手法就在于不加区别地把“要求个人利益”与“自私自利”等同起来,犯了混淆和歪曲概念的错误。

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值