龙信科技:引领电子物证技术,助力司法公正

文章关键词:电子数据取证、电子物证、手机取证、计算机取证、云取证、介质取证

在信息技术飞速发展的今天,电子物证在司法领域扮演着越来越重要的角色。苏州龙信信息科技有限公司(以下简称“龙信科技”)作为电子数据取证领域的先行者,专注于提供电子数据取证、手机取证、云取证、大数据、信息安全等解决方案,其业务范围涵盖了取证工具研发、大数据融合分析、案件技术支持、取证能力培训等多个方面。

电子物证是指以存储于介质载体中的电磁记录或光电记录对案件事实起证明作用的电子信息数据及其附属物。与传统物证相比,电子物证具有高科技性、存储和提交形式多样性、客观实在易变性、存在的广域性和实时准确性等特点。这些特点使得电子物证在司法实践中具有独特的价值和挑战。

龙信科技凭借其在网络安全和电子物证领域的顶尖人才和技术实力,为客户提供了一系列先进的电子数据取证和大数据分析产品。公司秉承“软件即服务”的理念,在全国多地设立研发或技术支持中心,服务超过10000家执法单位。

在电子物证的应用案例中,我们可以看到其在司法实践中的多样性和权威性。例如,在一起破坏计算机信息系统案中,通过分析电子文件的内在属性,如创建内容时间、最后一次修改时间、访问时间信息等,可以精确到“百纳秒”级别,从而帮助重建案件事实。

此外,电子物证技术还包括涉案计算机现场勘查、搜查与扣押、网络监控、邮件监控、技术鉴定等多种活动技术。龙信科技还积极参与电子数据取证相关专业人才培养工作,提高电子数据取证能力和水平。例如,由西南政法大学、山东警察学院联合主办、龙信科技承办的2024年“龙信杯”全国电子数据取证大赛,旨在推动电子数据取证技术的发展。

随着电子证据在诉讼中的重要性日益凸显,法院如何认定电子证据成为了一个关键问题。在一些案例中,法院通过分析电子证据的内在属性、复合内容、证据组合、印证体系以及“鉴—数—取”体系来重建案件事实,确保了电子证据的客观真实性。

总之,龙信科技在电子物证领域的专业能力和服务,为执法部门提供了强有力的技术支持,同时也推动了电子数据取证技术的发展和人才培养。随着技术的不断进步,电子物证在司法实践中的作用将更加重要,龙信科技也将继续为客户提供领先的产品和优质的服务,共同实现“数据赋能”。

LX-A216云取证系统

互联网取证产品

LX-A216云取证系统是一款集应用云端数据的数据获取、下载固定、数据分析、结果导出等功能于一体的专业取证设备。系统支持免密、账号密码、二维码扫码、短信验证码等多种登录方式,可对云端数据进行结构化处理及分析。适配多种常见应用,包括支付、出行、购物、云备份、网盘、社交等各类型 APP,可提取支付账单、购物订单、收货地址、出行行程网盘文件等云端数据。

图片

点击此处了解详情

2

LX-A303“鹰眼”介质快取系统

现场勘查产品

“鹰眼” 介质快取系统是一款致力于为办案人员打造一体化、规范化的高效现场勘查综合取证设备,采用高速介质复制、批量快速取证、自动取证分析技术,提供符合司法有效性的取证功能,使得现场证据固定、电子数据取证分析工作简单快捷。

图片

3

LX-A902人工智能自助取证机(便携版)

现场勘查产品

LX-A902 人工智能自助取证机是一款专门为实现取证工作自助化而研发的终端设备。系统采用硬件多路架构、并行分布式算法、协同采集引擎、人机智能交互技术,致力于打造高性能、多功能、全方位的自助取证设备。可以被轻松携带至任何需要现场取证的地点,实现快速部署。

图片

### 机械臂棋盘格手眼标定方法 #### 手眼标定的目的 手眼标定的核心目标是建立机械臂末端执行器坐标系与相机坐标系之间的转换关系。这种标定对于实现精确的视觉引导抓取至关重要[^1]。 #### 棋盘格标定原理 棋盘格标定是一种经典的标定技术,最初由张正友教授提出并广泛应用。其基本思路是利用棋盘格图案作为已知的空间参照物,在不同位置拍摄多幅图像,并通过这些图像计算相机的内参矩阵以及畸变参数[^3]。在此基础上,可以进一步扩展到手眼标定中。 #### 实现步骤概述 以下是基于棋盘格的手眼标定的一般流程: 1. **准备工具** - 使用标准尺寸的黑白相间棋盘格模板。 - 将棋盘格放置于不同的姿态下(通常建议至少采集10组数据),并通过相机记录每种姿态下的图像。 2. **获取位姿信息** - 利用OpenCV或其他计算机视觉库检测棋盘格角点的位置,从而得到棋盘格相对于相机的姿态(即旋转和平移向量)。 - 同时控制机械臂移动至特定位置,使末端夹具接触或接近棋盘格中心点,记录此时机械臂关节角度对应的TCP(Tool Center Point)在基座坐标系中的位置和姿态。 3. **构建约束方程** 假设存在两种常见的手眼配置模式:“Eye-in-hand” 和 “Eye-to-hand”。 对于 Eye-in-hand 配置: \[ {}^{C}T_{W}={}^{E}T_{B}\cdot{}^{C}T_{E} \] 而对于 Eye-to-hand 配置: \[ {}^{C}T_{W}={}^{B}T_{E}\cdot{}^{C}T_{E} \] 其中 ${}^{C}T_{W}$ 表示世界坐标系到相机坐标系的变换;${}^{E}T_{B}$ 或 ${}^{B}T_{E}$ 是机械臂运动带来的变化;而 ${}^{C}T_{E}$ 即为目标——相机相对末端执行器的关系矩阵^。 4. **算法求解** OpenCV 提供了 `cv::calibrateHandEye` 函数用于简化这一过程。输入为多个对应对齐后的 $\{{}^{E}T_{i},\,{}^{C}T_{j}\}$ 数据集,输出则为最终所需的变换矩阵 $R$ 和平移矢量 $t$[^2]。 5. **验证精度** 完成标定后需进行误差评估。例如让机器人重复定位某个固定物体,观察实际偏差是否满足应用需求。如果发现较大偏移,则可能需要重新调整实验条件或者增加样本数量再试一次。 ```python import cv2 import numpy as np # 示例代码片段展示如何调用手眼标定函数 def calibrate_hand_eye(gripper_poses, camera_poses): R, t = cv2.calibrateHandEye( gripper_poses=[np.array(pose).astype(np.float32) for pose in gripper_poses], camera_poses=[np.array(pose).astype(np.float32) for pose in camera_poses]) return R, t ``` --- #### 注意事项 - 确保每次拍照过程中棋盘格完全可见并无遮挡现象发生。 - 控制机械臂动作平稳缓慢以免引入额外振动干扰测量准确性。 - 如果环境光线不稳定可考虑采用带光源照明装置稳定曝光效果提升特征提取成功率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值