最近在学习人群异常行为检测的一些东西,看了Ramin Mehran, Alexis Oyama, Mubarak Shah的论文,Abnormal Crowd Behavior Detection using Social Force Model,
IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), Miami, 2009.
总结如下:
I. Introduction
One of the most challenging tasks in computer vision is analysis of human activity in crowded scenes. In addition, research in sociology and behavioral sciences provide mathematical models of pedestrian behavior patterns such as Social Force Model. In this paper, we introduce a computer vision method based on particle advection to detect and localize abnormal crowd behavior using the Social Force model.
(a) The block diagram of the abnormal behavior detection algorithm
1. Challenges of crowd behavior analysis
Conventional methods which a crowd is considered as a collection of individuals suffer from:
- Occlusion
- Clutter
- Low resolution
- Ignoring social interaction of pedestrians
2. Solution
- Considering a crowd as a global entity using particle advection method.
- Using Social Force Model to model crowd behaviors.
3. Advantages
- The holistic approach provides robustness to occlusion and clutter.
- Social Force Model endows the way to analyze crowd behaviors based on interaction forces.
II. Social Force Model
1.Description
In Social Force Model an individua

这篇论文提出了一种基于粒子输运的社会力模型,用于检测和定位拥挤场景中的异常人群行为。通过考虑人群作为一个整体,利用社会力模型分析行人交互力,从而克服遮挡和混乱的影响。在UMN数据集和网络数据集上进行了实验,验证了方法的有效性。
最低0.47元/天 解锁文章
1万+

被折叠的 条评论
为什么被折叠?



