- Flink Application:一种java应用程序,主要通过main方法来提交一个或多个Flink Job.
- Flink Cluster:Flink集群是由至少一个Flink JobManager和一个或多个TaskManager进程组成的分布式系统。
- 事件(Event):可以当做流处理或批处理应用程序当中的输入或输出,事件在flink中是一种特殊类型的记录(Record)。
- 记录(Record):数据集或数据流的组成元素。Operator和Function接收record作为输入,并将record作为输出发出。
- 分区(Partition):按照一定规则,对数据流当中的记录进行拆分,构成的独立子集。
- 算子(Operator):逻辑数据流图的节点,对数据流当中的元素执行计算操作,通常由函数(Function)来具体执行计算逻辑。Flink中的Source和Sink是数据输入和数据输出的特殊算子。
- 算子链(Operator Chain):由至少两个连续的、且符合一定规则的算子串联在一起构成的操作,链中多个算子在同一分区中,算子之间直接进行数据传递,而无须序列化/反序列化或网络传输。
- Flink JobManager:是Flink Cluster的主节点。包含三个不同的组件:Flink Resource Manager、Flink Dispatcher、运行每个Flink Job的Flink JobMaster。
- Flink JobMaster:是Flink JobManager运行中的组件之一。负责监督单个作业Task的执行。
- Flink
flink常见概念
最新推荐文章于 2024-12-01 22:54:10 发布
本文深入探讨Flink的核心概念,包括Flink Application的定义,Flink Cluster的组成,以及事件、记录、分区、算子等关键术语。了解这些概念有助于更好地掌握Flink的数据处理流程,特别是算子链如何优化数据传输效率,以及JobManager和TaskManager在集群中的角色。

最低0.47元/天 解锁文章
2288

被折叠的 条评论
为什么被折叠?



