MST--krukal
kruakal算法和prim算法相比理解起来比较容易,而且也容易编程实现。
kruskal算法的是选择最小权值的边来构造最小生成树,当然要防止在构造最小生成树的时候形成环,这个可以通过并查集来实现。
1、对所有的边按照权值升序排列。
2、从权值最小的边开始选择,加入到边集合的数组中。同时处理并查集数组。
3、依次选择其他边,如果选择的边在并查集中属于同一集合就抛弃,否则加入边集合数组中。
4、所有的边选取完毕,同时最小生成树也构造完毕。
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#define number 20
#define MAX 99999
typedef struct Edge
{
int info;
int begin,end;
}Edge;
typedef struct node
{
int info; //图的节点存放的信息,可随时变动
}GraphNode;
typedef struct
{
GraphNode matrix[number+1][number+1]; //构造邻接矩阵
int vexs[number+1]; //顶点向量
int vertex,edge; //顶点个数、弧个数
}Graph;
int cmp(const void *a,const void *b)
{
return (*((Edge*)a)).info - (*((Edge*)b)).info;
}
//创建图
void CreatGraph(Graph *G)
{
int i,k;
int x,y,data;
int vertex,edge;
printf("输入图的顶点个数和边的个数.\n");
scanf("%d%d",&vertex,&edge);
G->vertex = vertex;G->edge = edge;
printf("输入图的每个顶点.\n");
for(i=1;i<=vertex;i++)
scanf("%d",&G->vexs[i]);
for(i=1;i<=vertex;i++)
for(k=1;k<=vertex;k++)
G->matrix[i][k].info = MAX;
printf("请输入 %d 条边的横坐标、纵坐标、数值.\n",edge);
for(i=1;i<=edge;i++)
{
scanf("%d%d%d",&x,&y,&data);
G->matrix[x][y].info=data;
G->matrix[y][x].info=data;
}
}
//找出给定顶点的位置
int LocateVex(Graph *G,int V)
{
int i;
for(i=1;i<=G->vertex;i++)
if(G->vexs[i] == V)
return i;
return -1; //失败返回-1
}
void RecoverGraph(Graph *G)
{
int i,k;
for(i=1;i<=G->vertex;i++)
for(k=1;k<=G->vertex;k++)
G->matrix[i][k].info=0;
memset(G->vexs,0,sizeof(G->vexs));
G->vertex = G->edge = 0;
}
//查找当前弧是否构成环路,这里要用到并查集。
//这一步很关键,防止多余的边。
int Find(int digit[],int k)
{
while(digit[k] > 0)
k = digit[k];
return k;
}
void Kruskal(Graph *G)
{
Edge node[number];
int AlreadyFind[number]; //存储已经找到的弧
int i,k,count=0,m,n;
int sum=0;
//初始化
for(i=0;i<=G->vertex;i++)
AlreadyFind[i]=0;
//查找所有的弧
for(i=1;i<=G->vertex;i++)
{
for(k=i+1;k<=G->vertex;k++)
if(G->matrix[i][k].info < MAX)
{
node[count].info = G->matrix[i][k].info;
node[count].begin = i;
node[count].end = k;
count++;
}
}
//对弧的权值进行排序。。这里偷懒一下
qsort(node,count,sizeof(Edge),cmp);
for(i=0;i<count;i++)
{
n = Find(AlreadyFind,node[i].begin);
m = Find(AlreadyFind,node[i].end);
//如果所找的弧不构成回路,就添加到AlreadyFind数组中
if(m!=n)
{
AlreadyFind[n]=m;
printf("%d---%d\n",node[i].begin,node[i].end); //按照顺序输出弧
}
}
}
int main()
{
Graph G;
CreatGraph(&G);
Kruskal(&G);
RecoverGraph(&G);
return 0;
}
/************************************************************************/
/*
//顶点个数和弧的个数
6 10
//顶点
1 2 3 4 5 6
//弧
1 2 6
2 5 3
5 6 6
6 4 2
4 1 5
1 3 1
2 3 5
5 3 6
6 3 4
4 3 5
*/
/************************************************************************/