Flume构建日志采集系统 flume,kafka
扩展阅读:https://www.cnblogs.com/oubo/archive/2012/05/25/2517751.html
一、Flume介绍
1.Flume特点
- Flume是一个分布式的、可靠的、高可用的海量日志采集 、聚合和传输的系统
- 数据流模型:Source-Channel-Sink
- 事务机制保证消息传递的可靠性
- 内置丰富插件,轻松与其他系统集成
- Java实现,优秀的系统框架设计,模块分明,易于开发
2.Flume原型图
3.Flume基本组件
- Event:消息的基本单位,有header和body组成
- Agent:JVM进程,负责将一端外部来源产生的消息转 发到另一端外部的目的地
- Source:从外部来源读入event,并写入channel
- Channel:event暂存组件,source写入后,event将会 一直保存,
- Sink:从channel读入event,并写入目的地
3.Flume事件流
4.Flumes数据流
二、Flume搭建
1.下载二进制安装包
下载地址:flume.apache.org/download.ht…
2.安装Flume
解压缩安装包文件
[hadoop@hadoop01 apps]$ tar -zxvf apache-flume-1.8.0-bin.tar.gz
[hadoop@hadoop01 apps]$ cd apache-flume-1.8.0-bin/
[hadoop@hadoop01 apache-flume-1.8.0-bin]$ ll
总用量 148
drwxr-xr-x. 2 hadoop hadoop 62 1月 21 14:31 bin
-rw-r--r--. 1 hadoop hadoop 81264 9月 15 20:26 CHANGELOG
drwxr-xr-x. 2 hadoop hadoop 127 1月 21 14:31 conf
-rw-r--r--. 1 hadoop hadoop 5681 9月 15 20:26 DEVNOTES
-rw-r--r--. 1 hadoop hadoop 2873 9月 15 20:26 doap_Flume.rdf
drwxr-xr-x. 10 hadoop hadoop 4096 9月 15 20:48 docs
drwxr-xr-x. 2 hadoop hadoop 8192 1月 21 14:31 lib
-rw-r--r--. 1 hadoop hadoop 27663 9月 15 20:26 LICENSE
-rw-r--r--. 1 hadoop hadoop 249 9月 15 20:26 NOTICE
-rw-r--r--. 1 hadoop hadoop 2483 9月 15 20:26 README.md
-rw-r--r--. 1 hadoop hadoop 1588 9月 15 20:26 RELEASE-NOTES
drwxr-xr-x. 2 hadoop hadoop 68 1月 21 14:31 tools
[hadoop@hadoop01 apache-flume-1.8.0-bin]$
复制代码
3.创建软连接【此步骤可省略】
[root@hadoop01 bin]# ln -s /home/hadoop/apps/apache-flume-1.8.0-bin /usr/local/flume
复制代码
4.配置环境变量
编辑 /etc/profile文件,增加以下内容:
export FLUME_HOME=/usr/local/flume
export PATH=$PATH:${JAVA_HOME}/bin:${ZOOKEEPER_HOME}/bin:${HADOOP_HOME}/bin:${HADOOP_HOME}/sbin:${HIVE_HOME}/bin:${FLUME_HOME}/bin
复制代码
4.启动flume
使用example.conf 配置文件启动一个实例
a1.sources = r1
a1.channels = c1
a1.sinks = k1
a1.sources.r1.type = netcat
a1.sources.r1.bind = localhost
a1.sources.r1.port = 44444
a1.sources.r1.channels = c1
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
a1.sinks.k1.type = logger
a1.sinks.k1.channel = c1
复制代码
启动命令如下:
[root@hadoop01 conf]# pwd
/home/hadoop/apps/apache-flume-1.8.0-bin/conf
[root@hadoop01 conf]# flume-ng agent --conf conf --conf-file example.conf --name a1 -Dflume.root.logger=INFO,console
复制代码
启动成功后如下图所示:
........略
18/01/27 18:17:25 INFO node.AbstractConfigurationProvider: Channel c1 connected to [r1, k1]
18/01/27 18:17:25 INFO node.Application: Starting new configuration:{ sourceRunners:{r1=EventDrivenSourceRunner: { source:org.apache.flume.source.NetcatSource{name:r1,state:IDLE} }} sinkRunners:{k1=SinkRunner: { policy:org.apache.flume.sink.DefaultSinkProcessor@20470f counterGroup:{ name:null counters:{} } }} channels:{c1=org.apache.flume.channel.MemoryChannel{name: c1}} }
18/01/27 18:17:25 INFO node.Application: Starting Channel c1
18/01/27 18:17:25 INFO node.Application: Waiting for channel: c1 to start. Sleeping for 500 ms
18/01/27 18:17:25 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for type: CHANNEL, name: c1: Successfully registered new MBean.
18/01/27 18:17:25 INFO instrumentation.MonitoredCounterGroup: Component type: CHANNEL, name: c1 started
18/01/27 18:17:26 INFO node.Application: Starting Sink k1
18/01/27 18:17:26 INFO node.Application: Starting Source r1
18/01/27 18:17:26 INFO source.NetcatSource: Source starting
18/01/27 18:17:26 INFO source.NetcatSource: Created serverSocket:sun.nio.ch.ServerSocketChannelImpl[/127.0.0.1:44444]
复制代码
使用telnet发送数据
[root@hadoop01 apps]# telnet localhost 44444
Trying ::1...
telnet: connect to address ::1: Connection refused
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Are you OK ?
OK
复制代码
控制台打印如下:
Impl[/127.0.0.1:44444]
18/01/27 18:21:00 INFO sink.LoggerSink: Event: { headers:{} body: 41 72 65 20 79 6F 75 20 4F 4B 20 3F 0D Are you OK ?. }
复制代码
如无法使用telnet,请先安装telnet工具
[root@hadoop01 apps]# yum -y install telnet
复制代码
三、Flume实践
1.Source组件清单
- Source:对接各种外部数据源,将收集到的事件发送到Channel中,一个source可以向多个channel发送event,Flume内置非常丰富的Source,同时用户可以自定义Source
Source类型 | Type | 用途 |
---|---|---|
Avro Source | avro | 启动一个Avro Server,可与上一级Agent连接 |
HTTP Source | http | 启动一个HttpServer |
Exec Source | exec | 执行unix command,获取标准输出,如tail -f |
Taildir Source | TAILDIR | 监听目录或文件 |
Spooling Directory Source | spooldir | 监听目录下的新增文件 |
Kafka Source | org.apache.flume.sourc e.kafka.KafkaSource | 读取Kafka数据 |
JMS Source | jms | 从JMS源读取数据 |
2.avro Source Agent 和Exec Source Agent
- 配置一个avroagent,avrosource.conf 配置文件如下:
//avrosource.conf
avroagent.sources = r1
avroagent.channels = c1
avroagent.sinks = k1
avroagent.sources.r1.type = avro
avroagent.sources.r1.bind = 192.168.43.20
avroagent.sources.r1.port = 8888
avroagent.sources.r1.threads= 3
avroagent.sources.r1.channels = c1
avroagent.channels.c1.type = memory
avroagent.channels.c1.capacity = 10000
avroagent.channels.c1.transactionCapacity = 1000
avroagent.sinks.k1.type = logger
avroagent.sinks.k1.channel = c1
复制代码
- 启动一个avrosource的agent
[root@hadoop01 conf]# flume-ng agent --conf conf --conf-file avrosource.conf --name avroagent -Dflume.root.logger=INFO,console
复制代码
启动成功入下图所示:
...略
18/01/27 18:46:36 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for type: CHANNEL, name: c1: Successfully registered new MBean.
18/01/27 18:46:36 INFO instrumentation.MonitoredCounterGroup: Component type: CHANNEL, name: c1 started
18/01/27 18:46:36 INFO node.Application: Starting Sink k1
18/01/27 18:46:36 INFO node.Application: Starting Source r1
18/01/27 18:46:36 INFO source.AvroSource: Starting Avro source r1: { bindAddress: 192.168.43.20, port: 8888 }...
18/01/27 18:46:37 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for type: SOURCE, name: r1: Successfully registered new MBean.
18/01/27 18:46:37 INFO instrumentation.MonitoredCounterGroup: Component type: SOURCE, name: r1 started
18/01/27 18:46:37 INFO source.AvroSource: Avro source r1 started
复制代码
- 配置一个execAgent,实现与sourceAgent实现串联,execsource.conf 配置文件如下:
execagent.sources = r1
execagent.channels = c1
execagent.sinks = k1
execagent.sources.r1.type = exec
execagent.sources.r1.command = tail -F /home/hadoop/apps/flume/execsource/exectest.log
execagent.sources.r1.channels = c1
execagent.channels.c1.type = memory
execagent.channels.c1.capacity = 10000
execagent.channels.c1.transactionCapacity = 1000
execagent.sinks.k1.type = avro
execagent.sinks.k1.channel = c1
execagent.sinks.k1.hostname = 192.168.43.20
execagent.sinks.k1.port = 8888
复制代码
- 启动一个execAgent,并实现execagent监控文件变化,sourceAgent接收变化内容
启动 execAgent
[root@hadoop01 conf]# flume-ng agent --conf conf --conf-file execsource.conf --name execagent
复制代码
启动成功如下下图所示:
18/01/27 18:58:43 INFO instrumentation.MonitoredCounterGroup: Component type: SINK, name: k1 started
18/01/27 18:58:43 INFO sink.AbstractRpcSink: Rpc sink k1: Building RpcClient with hostname: 192.168.43.20, port: 8888
18/01/27 18:58:43 INFO sink.AvroSink: Attempting to create Avro Rpc client.
18/01/27 18:58:43 WARN api.NettyAvroRpcClient: Using default maxIOWorkers
18/01/27 18:58:44 INFO sink.AbstractRpcSink: Rpc sink k1 started.
复制代码
在execAgent监控的文件下写入内容,观察sourceagent是否接收到变化内容
[root@hadoop01 execsource]# echo 222 > exectest.log
[root@hadoop01 execsource]# echo 5555 >> exectest.log
[root@hadoop01 execsource]# cat exectest.log
222
5555
复制代码
在sourceagent控制打印台下查看监控消息如下:
18/01/27 18:58:50 INFO sink.LoggerSink: Event: { headers:{} body: 31 32 33 123 }
18/01/27 18:59:55 INFO sink.LoggerSink: Event: { headers:{} body: 35 35 35 35 5555 }
复制代码
则说明2个串联agent传递信息成功。
说明: avroagent 配置文件配置项起始名称需要与服务启动 -name 名称相一致。
3.Source组件- Spooling Directory Source
- 配置一个Spooling Directory Source ,spooldirsource.conf 配置文件内容如下:
a1.sources = r1
a1.channels = c1
a1.sinks = k1
a1.sources.r1.type = spooldir
a1.sources.r1.channels = c1
a1.sources.r1.spoolDir = /home/hadoop/apps/flume/spoolDir
a1.sources.r1.fileHeader = true
a1.channels.c1.type = memory
a1.channels.c1.capacity = 10000
a1.channels.c1.transactionCapacity = 1000
a1.sinks.k1.type = logger
a1.sinks.k1.channel = c1
复制代码
/home/hadoop/apps/flume/spoolDir 必须已经创建且具有用户读写权限。
启动 SpoolDirsourceAgent
[hadoop@hadoop01 conf]$ flume-ng agent --conf conf --conf-file spooldirsource.conf --name a1 -Dflume.root.logger=INFO,console
复制代码
在spoolDir文件夹下创建文件并写入文件内容,观察控制台消息:
18/01/28 17:06:54 INFO avro.ReliableSpoolingFileEventReader: Preparing to move file /home/hadoop/apps/flume/spoolDir/test to /home/hadoop/apps/flume/spoolDir/test.COMPLETED
18/01/28 17:06:55 INFO sink.LoggerSink: Event: { headers:{file=/home/hadoop/apps/flume/spoolDir/test} body: 32 32 32 222 }
复制代码
此时监测到SpoolDirSourceAgent 可以监控到文件变化。
值得说明的是:Spooling Directory Source Agent 并不能监听子级文件夹的文件变化,也不支持已存在的文件更新数据变化.
4.Source组件- Kafka Source
- 配置一个Kafa Source , kafasource.conf 配置文件内容如下:
kafkasourceagent.sources = r1
kafkasourceagent.channels = c1
kafkasourceagent.sinks = k1
kafkasourceagent.sources.r1.type = org.apache.flume.source.kafka.KafkaSource
kafkasourceagent.sources.r1.channels = c1
kafkasourceagent.sources.r1.batchSize = 100
kafkasourceagent.sources.r1.batchDurationMillis = 1000
kafkasourceagent.sources.r1.kafka.bootstrap.servers = 192.168.43.22:9092,192.168.43.23:9092,192.168.43.24:9092
kafkasourceagent.sources.r1.kafka.topics = flumetopictest1
kafkasourceagent.sources.r1.kafka.consumer.group.id = flumekafkagroupid
kafkasourceagent.channels.c1.type = memory
kafkasourceagent.channels.c1.capacity = 10000
kafkasourceagent.channels.c1.transactionCapacity = 1000
kafkasourceagent.sinks.k1.type = logger
kafkasourceagent.sinks.k1.channel = c1
复制代码
首先启动3个节点的kafka节点服务,在每个kafka节点执行,以后台方式运行
[root@hadoop03 bin]# ./kafka-server-start.sh -daemon ../config/server.properties
复制代码
在kafka节点上创建一个配置好的Topic flumetoptest1,命令如下:
[root@hadoop03 bin]# ./kafka-topics.sh --create --zookeeper 192.168.43.20:2181 --replication-factor 1 --partitions 3 --topic flumetopictest1
Created topic "flumetopictest1".
复制代码
创建成功后,启动一个kafka Source Agent,命令如下:
[root@hadoop01 conf]# flume-ng agent --conf conf --conf-file kafkasource.conf --name kafkasourceagent -Dflume.root.logger=INFO,console
复制代码
创建一个Kafka 生产者,进行消息发送
root@hadoop03 bin]# ./kafka-console-producer.sh --broker-list 192.168.43.22:9092,192.168.43.23:9092 --topic flumetopictest1
复制代码
发送消息,此时kafka 就可以接收到消息:
18/02/03 20:36:57 INFO sink.LoggerSink: Event: { headers:{topic=flumetopictest1, partition=2, timestamp=1517661413068} body: 31 32 33 31 33 32 32 31 12313221 }
18/02/03 20:37:09 INFO sink.LoggerSink: Event: { headers:{topic=flumetopictest1, partition=1, timestamp=1517661428930} body: 77 69 20 61 69 79 6F 75 08 08 08 wi aiyou... }
复制代码
5.Source 组件 -Taildir source
监听一个文件夹或者文件,通过正则表达式匹配需要监听的 数据源文件,Taildir Source通过将监听的文件位置写入到文件中来实现断点续传,并且能够保证没有重复数据的读取.
- 重要参数
type:source类型TAILDIR
positionFile:保存监听文件读取位置的文件路径
idleTimeout:关闭空闲文件延迟时间,如果有新的记录添加到已关闭的空闲文件
taildir srouce将继续打开该空闲文件,默认值120000毫秒
writePosInterval:向保存读取位置文件中写入读取文件位置的时间间隔,默认值 3000毫秒
batchSize:批量写入channel最大event数,默认值100
maxBackoffSleep:每次最后一次尝试没有获取到监听文件最新数据的最大延迟时 间,默认值5000毫秒
cachePatternMatching:对于监听的文件夹下通过正则表达式匹配的文件可能数量 会很多,将匹配成功的监听文件列表和读取文件列表的顺序都添加到缓存中,可以提高性能,默认值true
fileHeader :是否添加文件的绝对路径到event的header中,默认值false
fileHeaderKey:添加到event header中文件绝对路径的键值,默认值file
filegroups:监听的文件组列表,taildirsource通过文件组监听多个目录或文件
filegroups.:文件正则表达式路径或者监听指定文件路径
channels:Source对接的Channel名称 - 配置一个taildir Source,具体taildirsource.conf 配置文件内容如下:
taildiragent.sources=r1
taildiragent.channels=c1
taildiragent.sinks=k1
taildiragent.sources.r1.type=TAILDIR
taildiragent.sources.r1.positionFile=/home/hadoop/apps/flume/taildir/position/taildir_position.json
taildiragent.sources.r1.filegroups=f1 f2
taildiragent.sources.r1.filegroups.f1=/home/hadoop/apps/flume/taildir/test1/test.log
taildiragent.sources.r1.filegroups.f2=/home/hadoop/apps/flume/taildir/test2/.*log.*
taildiragent.sources.r1.channels=c1
taildiragent.channels.c1.type=memory
taildiragent.channels.c1.transcationCapacity=1000
taildiragent.sinks.k1.type=logger
taildiragent.sinks.k1.channel=c1
复制代码
启动一个taildirSource agent ,代码如下:
[root@hadoop01 conf]# flume-ng agent --conf conf --conf-file taildirsource.conf --name taildiragent -Dflume.root.logger=INFO,console
复制代码
开始在test1和test2文件夹写入文件,观察agent消息接收。
6.Channel组件
- Channel:Channel被设计为event中转暂存区,存储Source 收集并且没有被Sink消费的event ,为了平衡Source收集 和Sink读取数据的速度,可视为Flume内部的消息队列。
- Channel是线程安全的并且具有事务性,支持source写失 败重复写和sink读失败重复读等操作
- 常用的Channel类型有:Memory Channel、File Channel、 Kafka Channel、JDBC Channel等
7.Channel组件- Memory Channel
- Memory Channel:使用内存作为Channel,Memory Channel读写速度 快,但是存储数据量小,Flume进程挂掉、服务器停机或者重启都会 导致数据丢失。部署Flume Agent的线上服务器内存资源充足、不关 心数据丢失的场景下可以使用 关键参数:
type :channel类型memory
capacity :channel中存储的最大event数,默认值100
transactionCapacity :一次事务中写入和读取的event最大数,默认值100。
keep-alive:在Channel中写入或读取event等待完成的超时时间,默认值3秒
byteCapacityBufferPercentage:缓冲空间占Channel容量(byteCapacity)的百分比,为event中的头信息保留了空间,默认值20(单位百分比)
byteCapacity :Channel占用内存的最大容量,默认值为Flume堆内存的80%
复制代码
8. Channel组件- File Channel
- File Channel:将event写入到磁盘文件中,与Memory Channel相比存 储容量大,无数据丢失风险。
- File Channle数据存储路径可以配置多磁盘文件路径,提高写入文件性能
- Flume将Event顺序写入到File Channel文件的末尾,在配置文件中通 过设置maxFileSize参数设置数据文件大小上限
- 当一个已关闭的只读数据文件中的Event被完全读取完成,并且Sink已经提交读取完成的事务,则Flume将删除存储该数据文件
- 通过设置检查点和备份检查点在Agent重启之后能够快速将File Channle中的数据按顺序回放到内存中 关键参数如下:
type:channel类型为file
checkpointDir:检查点目录,默认在启动flume用户目录下创建,建 议单独配置磁盘路径
useDualCheckpoints:是否开启备份检查点,默认false,建议设置为true开启备份检查点,备份检查点的作用是当Agent意外出错导致写 入检查点文件异常,在重新启动File Channel时通过备份检查点将数据回放到内存中,如果不开启备份检查点,在数据回放的过程中发现检查点文件异常会对所数据进行全回放,全回放的过程相当耗时
backupCheckpointDir:备份检查点目录,最好不要和检查点目录在同 一块磁盘上
checkpointInterval:每次写检查点的时间间隔,默认值30000毫秒
dataDirs:数据文件磁盘存储路径,建议配置多块盘的多个路径,通过磁盘的并行写入来提高file channel性能,多个磁盘路径用逗号隔开
transactionCapacity:一次事务中写入和读取的event最大数,默认值 10000
maxFileSize:每个数据文件的最大大小,默认值:2146435071字节
minimumRequiredSpace:磁盘路径最小剩余空间,如果磁盘剩余空 间小于设置值,则不再写入数据
capacity:file channel可容纳的最大event数
keep-alive:在Channel中写入或读取event等待完成的超时时间,默认值3秒
复制代码
配置一个FileChannel,filechannel.conf 的配置内容如下:
a1.sources = r1
a1.channels = c1
a1.sinks = k1
a1.sources.r1.type = netcat
a1.sources.r1.bind = localhost
a1.sources.r1.port = 44444
a1.sources.r1.channels = c1
a1.channels.c1.type = file
a1.channels.c1.dataDirs = /home/hadoop/apps/flume/filechannel/data
a1.channels.c1.checkpointDir = /home/hadoop/apps/flume/filechannel/checkpoint
a1.channels.c1.useDualCheckpoints = true
a1.channels.c1.backupCheckpointDir = /home/hadoop/apps/flume/filechannel/backup
a1.sinks.k1.type = logger
a1.sinks.k1.channel = c1
复制代码
启动一个FileChannel,启动命令如下:
[root@hadoop01 bin]# flume-ng agent --conf conf --conf-file filechannle.conf --name a1 -Dflume.root.logger=INFO,console
复制代码
向配置文件端口44444发送数据,观察Channel记录情况
telnet localhost asdfasd
复制代码
此时可以观察到控制台打印监控结果
18/02/04 21:15:44 INFO sink.LoggerSink: Event: { headers:{} body: 61 64 66 61 64 66 61 64 66 61 73 66 0D adfadfadfasf. }
18/02/04 21:15:48 INFO file.EventQueueBackingStoreFile: Start checkpoint for /home/hadoop/apps/flume/filechannel/checkpoint/checkpoint, elements to sync = 1
18/02/04 21:15:48 INFO file.EventQueueBackingStoreFile: Updating checkpoint metadata: logWriteOrderID: 1517749968978, queueSize: 0, queueHead: 0
18/02/04 21:15:48 INFO file.EventQueueBackingStoreFile: Attempting to back up checkpoint.
18/02/04 21:15:48 INFO file.Serialization: Skipping in_use.lock because it is in excludes set
18/02/04 21:15:48 INFO file.Serialization: Deleted the following files: , checkpoint, checkpoint.meta, inflightputs, inflighttakes.
18/02/04 21:15:48 INFO file.Log: Updated checkpoint for file: /home/hadoop/apps/flume/filechannel/data/log-2 position: 170 logWriteOrderID: 1517749968978
18/02/04 21:15:49 INFO file.EventQueueBackingStoreFile: Checkpoint backup completed.
复制代码
9.Channel组件- Kafka Channel
Kafka Channel:将分布式消息队列kafka作为channel相对于Memory Channel和File Channel存储容量更大、 容错能力更强,弥补了其他两种Channel的短板,如果合理利用Kafka的性能,能够达到事半功倍的效果。 关键参数如下:
type:Kafka Channel类型org.apache.flume.channel.kafka.KafkaChannel
kafka.bootstrap.servers:Kafka broker列表,格式为ip1:port1, ip2:port2…,建 议配置多个值提高容错能力,多个值之间用逗号隔开
kafka.topic:topic名称,默认值“flume-channel”
kafka.consumer.group.id:Consumer Group Id,全局唯一
parseAsFlumeEvent:是否以Avro FlumeEvent模式写入到Kafka Channel中, 默认值true,event的header信息与event body都写入到kafka中
pollTimeout:轮询超时时间,默认值500毫秒
kafka.consumer.auto.offset.reset:earliest表示从最早的偏移量开始拉取,latest表示从最新的偏移量开始拉取,none表示如果没有发现该Consumer组之前拉 取的偏移量则抛异常
复制代码
配置一个KafakChannel, kafkachannel.conf 配置内容如下:
a1.sources = r1
a1.channels = c1
a1.sinks = k1
a1.sources.r1.type = netcat
a1.sources.r1.bind = localhost
a1.sources.r1.port = 44444
a1.sources.r1.channels = c1
a1.channels.c1.type = org.apache.flume.channel.kafka.KafkaChannel
a1.channels.c1.kafka.bootstrap.servers = 192.168.43.22:9092,192.168.43.23:9092
a1.channels.c1.kafka.topic = flumechannel2
a1.channels.c1.kafka.consumer.group.id = flumecgtest1
a1.sinks.k1.type = logger
a1.sinks.k1.channel = c1
复制代码
启动kafak服务,创建一个kafka主题,命令如下:
[root@hadoop03 bin]# ./kafka-server-start.sh -daemon ../config/server.properties
[root@hadoop03 bin]# ./kafka-topics.sh --create --zookeeper 192.168.43.20:2181 --replication-factor 1 --partitions 3 --topic flumechannel2
复制代码
查看创建的主题信息
[root@hadoop03 bin]# ./kafka-topics.sh --list --zookeeper 192.168.43.20:2181
__consumer_offsets
flumechannel2
topicnewtest1
复制代码
启动kafka agent,使用telnet发送数据
[root@hadoop01 conf]# flume-ng agent --conf conf --conf-file kafkachannel.conf --name a1 -Dflume.root.logger=INFO,console
[root@hadoop01 flume]# clear
[root@hadoop01 flume]# telnet localhost 44444
Trying ::1...
telnet: connect to address ::1: Connection refused
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
abc
OK
复制代码
监听信息如下:
18/02/04 21:39:33 INFO sink.LoggerSink: Event: { headers:{} body: 61 62 63 0D abc. }
复制代码
10.Sink组件
- Sink:从Channel消费event,输出到外部存储,或者输出到下一个阶段的agent
- 一个Sink只能从一个Channel中消费event
- 当Sink写出event成功后,就会向Channel提交事务。Sink 事务提交成功,处理完成的event将会被Channel删除。否 则Channel会等待Sink重新消费处理失败的event
- Flume提供了丰富的Sink组件,如Avro Sink、HDFS Sink、Kafka Sink、File Roll Sink、HTTP Sink等
11.Sink组件- Avro Sink
- Avro Sink常用于对接下一层的Avro Source,通过发送RPC请求将Event发送到下一层的Avro Source
- 为了减少Event传输占用大量的网络资源, Avro Sink提供了端到端的批量压缩数据传输
关键参数说明
type:Sink类型为avro。
hostname:绑定的目标Avro Souce主机名称或者IP
port:绑定的目标Avro Souce端口号
batch-size:批量发送Event数,默认值100
compression-type:是否使用压缩,如果使用压缩设则值为
“deflate”, Avro Sink设置了压缩那么Avro Source也应设置相同的 压缩格式,目前支持zlib压缩,默认值none
compression-level:压缩级别,0表示不压缩,从1到9数字越大压缩
效果越好,默认值6
复制代码
12.Sink组件- HDFS Sink
- HDFS Sink将Event写入到HDFS中持久化存储
- HDFS Sink提供了强大的时间戳转义功能,根据Event头信息中的
- timestamp时间戳信息转义成日期格式,在HDFS中以日期目录分层存储
关键参数信息说明如下:
type:Sink类型为hdfs。
hdfs.path:HDFS存储路径,支持按日期时间分区。
hdfs.filePrefix:Event输出到HDFS的文件名前缀,默认前缀FlumeData
hdfs.fileSuffix:Event输出到HDFS的文件名后缀
hdfs.inUsePrefix:临时文件名前缀
hdfs.inUseSuffix:临时文件名后缀,默认值.tmp
hdfs.rollInterval:HDFS文件滚动生成时间间隔,默认值30秒,该值设置 为0表示文件不根据时间滚动生成
复制代码
配置一个hdfsink.conf文件,配置内容如下:
a1.sources = r1
a1.channels = c1
a1.sinks = k1
a1.sources.r1.type = netcat
a1.sources.r1.bind = localhost
a1.sources.r1.port = 44444
a1.sources.r1.interceptors = i1
a1.sources.r1.interceptors.i1.type = timestamp
a1.sources.r1.interceptors.i1.preserveExisting = false
a1.sources.r1.channels = c1
a1.channels.c1.type = memory
a1.channels.c1.capacity = 10000
a1.channels.c1.transactionCapacity = 1000
a1.sinks.k1.type = hdfs
a1.sinks.k1.channel = c1
a1.sinks.k1.hdfs.path = /data/flume/%Y%m%d
a1.sinks.k1.hdfs.filePrefix = hdfssink
a1.sinks.k1.hdfs.fileType = DataStream
a1.sinks.k1.hdfs.writeFormat = Text
a1.sinks.k1.hdfs.round = true
a1.sinks.k1.hdfs.roundValue = 1
a1.sinks.k1.hdfs.roundUnit = minute
a1.sinks.k1.hdfs.callTimeout = 60000
复制代码
启动一个hdfssink agent,命令如下:
[root@hadoop01 conf]# flume-ng agent --conf conf --conf-file hdfssink.conf --name a1 -Dflume.root.logger=INFO,console
复制代码
使用telnet 向44444发送数据,观察数据写入结果
[hadoop@hadoop01 root]$ telnet localhost 44444
Trying ::1...
telnet: connect to address ::1: Connection refused
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
abc
OK
2323444
OK
复制代码
此时控制台打印,在HDFS文件系统生成一个临时文件
8/02/04 22:41:52 INFO hdfs.HDFSDataStream: Serializer = TEXT, UseRawLocalFileSystem = false
18/02/04 22:41:52 INFO hdfs.BucketWriter: Creating /data/flume/20180204/hdfssink.1517755312242.tmp
18/02/04 22:42:24 INFO hdfs.BucketWriter: Closing /data/flume/20180204/hdfssink.1517755312242.tmp
18/02/04 22:42:24 INFO hdfs.BucketWriter: Renaming /data/flume/20180204/hdfssink.1517755312242.tmp to /data/flume/20180204/hdfssink.1517755312242
18/02/04 22:42:24 INFO hdfs.HDFSEventSink: Writer callback called.
复制代码
值得注意的是:请使用hadoop用户来执行agent的创建和消息的发送,避免因权限导致HDFS文件无法写入
13.Sink组件- Kafka Sink
Flume通过KafkaSink将Event写入到Kafka指定的主题中 主要参数说明如下:
type:Sink类型,值为KafkaSink类路径 org.apache.flume.sink.kafka.KafkaSink。
kafka.bootstrap.servers:Broker列表,定义格式host:port,多个Broker之间用逗号隔开,可以配置一个也可以配置多个,用于Producer发现集群中的Broker,建议配置多个,防止当个Broker出现问题连接 失败。
kafka.topic:Kafka中Topic主题名称,默认值flume-topic。
flumeBatchSize:Producer端单次批量发送的消息条数,该值应该根据实际环境适当调整,增大批量发送消息的条数能够在一定程度上提高性能,但是同时也增加了延迟和Producer端数据丢失的风险。 默认值100。
kafka.producer.acks:设置Producer端发送消息到Borker是否等待接收Broker返回成功送达信号。0表示Producer发送消息到Broker之后不需要等待Broker返回成功送达的信号,这种方式吞吐量高,但是存 在数据丢失的风险。1表示Broker接收到消息成功写入本地log文件后向Producer返回成功接收的信号,不需要等待所有的Follower全部同步完消息后再做回应,这种方式在数据丢失风险和吞吐量之间做了平衡。all(或者-1)表示Broker接收到Producer的消息成功写入本 地log并且等待所有的Follower成功写入本地log后向Producer返回成功接收的信号,这种方式能够保证消息不丢失,但是性能最差。默 认值1。
useFlumeEventFormat:默认值false,Kafka Sink只会将Event body内 容发送到Kafka Topic中。如果设置为true,Producer发送到KafkaTopic中的Event将能够保留Producer端头信息
复制代码
配置一个kafkasink.conf,具体配置内容如下:
a1.sources = r1
a1.channels = c1
a1.sinks = k1
a1.sources.r1.type = netcat
a1.sources.r1.bind = localhost
a1.sources.r1.port = 44444
a1.sources.r1.channels = c1
a1.channels.c1.type = memory
a1.channels.c1.capacity = 10000
a1.channels.c1.transactionCapacity = 1000
a1.sinks.k1.type = org.apache.flume.sink.kafka.KafkaSink
a1.sinks.k1.channel = c1
a1.sinks.k1.kafka.topic = FlumeKafkaSinkTopic1
a1.sinks.k1.kafka.bootstrap.servers = 192.168.43.22:9092,192.168.43.23:9092
a1.sinks.k1.kafka.flumeBatchSize = 100
a1.sinks.k1.kafka.producer.acks = 1
复制代码
启动kafka Broker节点22和Broker节点23
[root@hadoop03 bin]# ./kafka-server-start.sh -daemon ../config/server.properties
复制代码
按配置文件创建主题信息
[root@hadoop03 bin]# ./kafka-topics.sh --create --zookeeper 192.168.43.20:2181 --replication-factor 1 --partitions 3 --topic FlumeKafkaSinkTopic1
Created topic "FlumeKafkaSinkTopic1".
复制代码
启动一个kafkasink agent,启动命令如下:
[root@hadoop01 conf]# flume-ng agent --conf conf --conf-file kafkasink.conf --name a1 >/dev/null 2>&1 &
复制代码
14.Interceptor拦截器
- Source将event写入到Channel之前调用拦截器
- Source和Channel之间可以有多个拦截器,不同的拦截器使用不同的 规则处理Event
- 可选、轻量级、可插拔的插件
- 通过实现Interceptor接口实现自定义的拦截器
- 内置拦截器:Timestamp Interceptor、Host Interceptor、UUID Interceptor、Static Interceptor、Regex Filtering Interceptor等
15.Timestamp Interceptor
- Flume使用时间戳拦截器在event头信息中添加时间戳信息, Key为timestamp,Value为拦截器拦截Event时的时间戳
- 头信息时间戳的作用,比如HDFS存储的数据采用时间分区存储,Sink可以根据Event头信息中的时间戳将Event按照时间分区写入到 HDFS
- 关键参数说明:
- type:拦截器类型为timestamp
- preserveExisting:如果头信息中存在timestamp时间戳信息是否保留原来的时间戳信息,true保留,false使用新的时间戳替换已经存在的时间戳,默认值为false
16.Host Interceptor
- Flume使用主机戳拦截器在Event头信息中添加主机名称或者IP
- 主机拦截器的作用:比如Source将Event按照主机名称写入到不同的Channel中便于后续的Sink对不同Channnel中的数据分开处理
- 关键参数说明:
- type:拦截器类型为host
- preserveExisting:如果头信息中存在timestamp时间戳信息是否保留原来的时间戳信息,true保留,false使用新的时间戳替换已经存在的时间戳,默认值为false
- useIP:是否使用IP作为主机信息写入都信息,默认值为false
- hostHeader:设置头信息中主机信息的Key,默认值为host
17.Host InterceptorStatic Interceptor
- Flume使用static interceptor静态拦截器在evetn头信息添加静态信息
- 关键参数说明:
- type:拦截器类型为static
- preserveExisting:如果头信息中存在timestamp时间戳信息是否保留原来的时间戳信息,true保留,false使用新的时间戳替换已经 存在的时间戳,默认值为false
- key:头信息中的键
- value:头信息中键对应的值
18.Selector选择器
- Source将event写入到Channel之前调用拦截器,如果配置了Interceptor拦截器,则Selector在拦截器全部处理完之后调用。通过 selector决定event写入Channel的方式
- 内置Replicating Channel Selector复制Channel选择器、 Multiplexing Channel Selector复用Channel选择器
19.Replicating Channel Selector
- 如果Channel选择器没有指定,默认是Replicating Channel Selector。即一个Source以复制的方式将一个event同时写入到多个Channel中,不同的Sink可以从不同的Channel中获取相同的event。
- 关键参数说明:
- selector.type:Channel选择器类型为replicating
- selector.optional:定义可选Channel,当写入event到可选Channel失败时,不会向Source抛出异常,继续执行。多个可选Channel之 间用空格隔开
一个source将一个event拷贝到多个channel,通过不同的sink消费不同的channel,将相同的event输出到不同的地方 配置文件:replicating_selector.conf
a1.sources = r1
a1.channels = c1 c2
a1.sinks = k1 k2
#定义source
a1.sources.r1.type = netcat
a1.sources.r1.bind = localhost
a1.sources.r1.port = 44444
#设置复制选择器
a1.sources.r1.selector.type = replicating
#设置required channel
a1.sources.r1.channels = c1 c2
#设置channel c1
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 1000
#设置channel c2
a1.channels.c2.type = memory
a1.channels.c2.capacity = 1000
a1.channels.c2.transactionCapacity = 1000
#设置kafka sink
a1.sinks.k1.channel = c1
a1.sinks.k1.type = org.apache.flume.sink.kafka.KafkaSink
a1.sinks.k1.kafka.topic = FlumeSelectorTopic1
a1.sinks.k1.kafka.bootstrap.servers = 192.168.43.22:9092,192.168.23.103:9092
a1.sinks.k1.kafka.flumeBatchSize = 5
a1.sinks.k1.kafka.producer.acks = 1
#设置file sink
a1.sinks.k2.channel = c2
a1.sinks.k2.type = file_roll
a1.sinks.k2.sink.directory = /home/hadoop/apps/flume/selector
a1.sinks.k2.sink.rollInterval = 60
复制代码
分别写入到kafka和文件中
创建主题FlumeKafkaSinkTopic1
bin/kafka-topics.sh --create --zookeeper 192.168.183.100:2181 --replication-factor 1 --partitions 3 --topic FlumeSelectorTopic1
复制代码
启动flume agent
bin/flume-ng agent --conf conf --conf-file conf/replicating_selector.conf --name a1
复制代码
使用telnet发送数据
telnet localhost 44444
复制代码
查看/home/hadoop/apps/flume/selector路径下的数据
查看kafka FlumeSelectorTopic1主题数据
bin/kafka-console-consumer.sh --zookeeper 192.168.183.100:2181 --from-beginning --topic FlumeSelectorTopic1
复制代码
20.Multiplexing Channel Selector
-Multiplexing Channel Selector多路复用选择器根据event的头信息中不 同键值数据来判断Event应该被写入到哪个Channel中
- 三种级别的Channel,分别是必选channle、可选channel、默认channel
- 关键参数说明:
selector.type:Channel选择器类型为multiplexing
selector.header:设置头信息中用于检测的headerName
selector.default:默认写入的Channel列表
selector.mapping.*:headerName对应的不同值映射的不同Channel列表
selector.optional:可选写入的Channel列表
复制代码
配置文件multiplexing_selector.conf、avro_sink1.conf、avro_sink2.conf、avro_sink3.conf 向不同的avro_sink对应的配置文件的agent发送数据,不同的avro_sink配置文件通过static interceptor在event头信息中写入不同的静态数据 multiplexing_selector根据event头信息中不同的静态数据类型分别发送到不同的目的地
multiplexing_selector.conf
a3.sources = r1
a3.channels = c1 c2 c3
a3.sinks = k1 k2 k3
a3.sources.r1.type = avro
a3.sources.r1.bind = 192.168.183.100
a3.sources.r1.port = 8888
a3.sources.r1.threads= 3
#设置multiplexing selector
a3.sources.r1.selector.type = multiplexing
a3.sources.r1.selector.header = logtype
#通过header中logtype键对应的值来选择不同的sink
a3.sources.r1.selector.mapping.ad = c1
a3.sources.r1.selector.mapping.search = c2
a3.sources.r1.selector.default = c3
a3.sources.r1.channels = c1 c2 c3
a3.channels.c1.type = memory
a3.channels.c1.capacity = 10000
a3.channels.c1.transactionCapacity = 1000
a3.channels.c2.type = memory
a3.channels.c2.capacity = 10000
a3.channels.c2.transactionCapacity = 1000
a3.channels.c3.type = memory
a3.channels.c3.capacity = 10000
a3.channels.c3.transactionCapacity = 1000
#分别设置三个sink的不同输出
a3.sinks.k1.type = file_roll
a3.sinks.k1.channel = c1
a3.sinks.k1.sink.directory = /home/hadoop/apps/flume/multiplexing/k11
a3.sinks.k1.sink.rollInterval = 60
a3.sinks.k2.channel = c2
a3.sinks.k2.type = file_roll
a3.sinks.k2.sink.directory = /home/hadoop/apps/flume/multiplexing/k12
a3.sinks.k2.sink.rollInterval = 60
a3.sinks.k3.channel = c3
a3.sinks.k3.type = file_roll
a3.sinks.k3.sink.directory = /home/hadoop/apps/flume/multiplexing/k13
a3.sinks.k3.sink.rollInterval = 60
复制代码
avro_sink1.conf
agent1.sources = r1
agent1.channels = c1
agent1.sinks = k1
agent1.sources.r1.type = netcat
agent1.sources.r1.bind = localhost
agent1.sources.r1.port = 44444
agent1.sources.r1.interceptors = i1
agent1.sources.r1.interceptors.i1.type = static
agent1.sources.r1.interceptors.i1.key = logtype
agent1.sources.r1.interceptors.i1.value = ad
agent1.sources.r1.interceptors.i1.preserveExisting = false
agent1.sources.r1.channels = c1
agent1.channels.c1.type = memory
agent1.channels.c1.capacity = 10000
agent1.channels.c1.transactionCapacity = 1000
agent1.sinks.k1.type = avro
agent1.sinks.k1.channel = c1
agent1.sinks.k1.hostname = 192.168.183.100
agent1.sinks.k1.port = 8888
复制代码
avro_sink2.conf
agent2.sources = r1
agent2.channels = c1
agent2.sinks = k1
agent2.sources.r1.type = netcat
agent2.sources.r1.bind = localhost
agent2.sources.r1.port = 44445
agent2.sources.r1.interceptors = i1
agent2.sources.r1.interceptors.i1.type = static
agent2.sources.r1.interceptors.i1.key = logtype
agent2.sources.r1.interceptors.i1.value = search
agent2.sources.r1.interceptors.i1.preserveExisting = false
agent2.sources.r1.channels = c1
agent2.channels.c1.type = memory
agent2.channels.c1.capacity = 10000
agent2.channels.c1.transactionCapacity = 1000
agent2.sinks.k1.type = avro
agent2.sinks.k1.channel = c1
agent2.sinks.k1.hostname = 192.168.183.100
agent2.sinks.k1.port = 8888
复制代码
avro_sink3.conf
agent3.sources = r1
agent3.channels = c1
agent3.sinks = k1
agent3.sources.r1.type = netcat
agent3.sources.r1.bind = localhost
agent3.sources.r1.port = 44446
agent3.sources.r1.interceptors = i1
agent3.sources.r1.interceptors.i1.type = static
agent3.sources.r1.interceptors.i1.key = logtype
agent3.sources.r1.interceptors.i1.value = other
agent3.sources.r1.interceptors.i1.preserveExisting = false
agent3.sources.r1.channels = c1
agent3.channels.c1.type = memory
agent3.channels.c1.capacity = 10000
agent3.channels.c1.transactionCapacity = 1000
agent3.sinks.k1.type = avro
agent3.sinks.k1.channel = c1
agent3.sinks.k1.hostname = 192.168.183.100
agent3.sinks.k1.port = 8888
复制代码
在/home/hadoop/apps/flume/multiplexing目录下分别创建看k1 k2 k3目录
bin/flume-ng agent --conf conf --conf-file conf/multiplexing_selector.conf --name a3 -Dflume.root.logger=INFO,console
bin/flume-ng agent --conf conf --conf-file conf/avro_sink1.conf --name agent1 >/dev/null 2>&1 &
bin/flume-ng agent --conf conf --conf-file conf/avro_sink2.conf --name agent2 >/dev/null 2>&1 &
bin/flume-ng agent --conf conf --conf-file conf/avro_sink3.conf --name agent3 >/dev/null 2>&1 &
复制代码
使用telnet发送数据 telnet localhost 44444
21.Sink Processor
- Sink Processor协调多个sink间进行load balance和fail over
- Default Sink Processor只有一个sink,无需创建Sink Processor
- Sink Group:将多个sink放到一个组内,要求组内一个sink消费channel
- Load-Balancing Sink Processor(负载均衡处理器)round_robin(默认)或 random
- Failover Sink Processor(容错处理器)可定义一个sink优先级列表,根据优先级选择使用的sink
22.Load-Balancing Sink Processor
关键参数说明:
sinks:sink组内的子Sink,多个子sink之间用空格隔开
processor.type:设置负载均衡类型load_balance
processor.backoff:设置为true时,如果在系统运行过程中执行的Sink失败,会将失败的Sink放进一个冷却池中。默认值false
processor.selector.maxTimeOut:失败sink在冷却池中最大驻留时间,默认值30000ms
processor.selector:负载均衡选择算法,可以使用轮询“round_robin”、随机“random”或者是继承AbstractSinkSelector类的自定义负载均衡实现类
复制代码
23.Failover Sink Processor
关键参数说明:
sinks:sink组内的子Sink,多个子sink之间用空格隔开
processor.type:设置故障转移类型“failover”
processor.priority.<sinkName>:指定Sink组内各子Sink的优先级别,优先级从高到低,数值越大优先级越高
processor.maxpenalty:等待失败的Sink恢复的最长时间,默认值30000毫秒
复制代码
24.Failover应用场景
- 分布式日志收集场景
- 多个agent收集不同机器上相同类型的日志数据,为了保障高可用,采用分层部署,日志收集层Collector部署两个甚至多个,Agent通过Failover SinkProcessor实现其中任何一个collector挂掉不影响系统的日志收集服务
总结