Python3.5——内置模块详解之shelve模块、xml模块、configparser模块、hashlib、hmac模块

1、shelve模块 shelve类似于一个key-value数据库,可以很方便的用来保存Python的内存对象,其内部使用pickle来序列化数据, 简单来说,使用者可以将一个列表、字典、或者用户自定义的类实例保存到shelve中,下次需要用的时候直接取出来, 就是一个Python内存对象,不需...

2017-09-29 17:42:05

阅读数 241

评论数 0

视觉直观感受 7 种常用的排序算法

1. 快速排序 介绍: 快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序 n 个项目要Ο(n log n)次比较。在最坏状况下则需要Ο(n2)次比较,但这种状况并不常见。事实上,快速排序通常明显比其他Ο(n log n) 算法更快,因为它的内部循环(inner loo...

2017-09-29 15:05:56

阅读数 106

评论数 0

八大排序算法

概述 排序有内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存。 我们这里说说八大排序就是内部排序。          当n较大,则应采用时间复杂度为O(nlog2n)的排序方法:快速排序、...

2017-09-29 15:03:09

阅读数 135

评论数 0

贪心算法详解

有人说贪心算法是最简单的算法,原因很简单:你我其实都很贪,根本不用学就知道怎么贪。有人说贪心算法是最复杂的算法,原因也很简单:这世上会贪的人太多了,那轮到你我的份?                                                          ...

2017-09-29 11:04:32

阅读数 153

评论数 0

Python3.5——内置模块详解之os模块、sys模块、shutil模块

1、os模块:提供对操作系统进行调用的接口

2017-09-28 20:57:53

阅读数 2152

评论数 0

Python3.5——内置模块详解之random模块

1、random模块基础的方法 #!/usr/bin/env python # -*- coding:utf-8 -*- # Author:ZhengzhengLiu import random print(random.random()) #随机产生[0,1)之间的浮点值...

2017-09-28 20:21:00

阅读数 3057

评论数 0

Python3.5——内置模块详解之time与datetime模块

1、模块的分类 a、标准库(Python自带):sys、os模块 b、开源模块(第三方模块) c、自定义模块 2、内建模块——time和datatime 在Python中通常用以下几种方式来表示时间: a、时间戳:从1970年1月1日开始到当下的时间的秒数,导入time模块(import time...

2017-09-28 14:42:36

阅读数 770

评论数 0

Python3.5——模块定义、导入、优化详解

1、模块体系大纲 2、模块的定义 本质:是一个.py格式的Python文件。文件名test.py,对应的模块名为:test。 用来从逻辑上组织Python代码(变量、函数、类、逻辑),实现一个功能。 3、模块的导入方法 举例:

2017-09-26 17:07:01

阅读数 337

评论数 0

Python3.5——软件目录结构规范

1、"设计项目目录结构"的原因: (1)可读性高: 不熟悉这个项目的代码的人,一眼就能看懂目录结构,知道程序启动脚本是哪个,测试目录在哪儿,配置文件在哪儿等等。从而非常快速的了解这个项目。 (2)可维护性高: 定义好组织规则后,维护者就能很明确地知道,新增的哪个文件...

2017-09-26 11:25:59

阅读数 3136

评论数 0

Python3.5——Json与pickle数据序列化

1、Json:不同语言之间进行数据交互。 (1)JSON数据序列化:dumps() JSON数据是一种轻量级的数据交换格式,序列化:将内存数据对象变成字符串。 #!/usr/bin/env python # -*- coding:utf-8 -*- # Author:ZhengzhengLi...

2017-09-26 09:56:21

阅读数 317

评论数 0

Python3.5——内置方法参数详解

Python的内置方法参数详解网站为:https://docs.python.org/3/library/functions.html?highlight=built#ascii 1、abs(x):返回一个数字的绝对值。参数可以是整数或浮点数。如果参数是一个复数,则返回它的大小。 #内置函数a...

2017-09-25 17:11:11

阅读数 678

评论数 0

Python3.5——迭代器与生成器(下)

1、迭代器 我们已经知道,可以直接作用于for循环的数据类型有以下几种: 一类是集合数据类型,如列表list、元组tuple、字典dict、集合set、字符串str等;另一类是generator,包括生成器和带yield的generator function。 这些可以直接作用于for循环的对象统...

2017-09-23 22:23:22

阅读数 248

评论数 0

Python3.5——迭代器与生成器(上)

1、列表生成式 通过列表生成式可以直接创建一个列表。代码:a = [i*2 for i in range(10)] #!/usr/bin/env python # -*- coding:utf-8 -*- # Author:ZhengzhengLiu #列表生成式 a = [i*2 for ...

2017-09-23 19:56:20

阅读数 223

评论数 0

机器学习——非监督学习——层次聚类(Hierarchical clustering)

1、层次聚类(Hierarchical clustering)的步骤 假设有N个待聚类的样本,对于层次聚类来说,其步骤为: (1)初始化:把每个样本各自归为一类(每个样本自成一类),计算每两个类之间的距离,在这里也就是样本与样本之间的相似度(本质还是计算类与类之间的距离)。 (2)寻找各个类...

2017-09-21 21:35:11

阅读数 5232

评论数 0

机器学习——聚类(clustering):K-means算法(非监督学习)

1、归类 聚类(clustering):属于非监督学习(unsupervised learning),是无类别标记(class label) 2、举例 3、K-means算法 (1)K-means算法是聚类(clustering)中的经典算法,数据挖掘的十大经典算法之一 (2)算法接收参数K,然...

2017-09-21 15:38:28

阅读数 2633

评论数 0

机器学习——回归中的相关度与R平方值及其应用

1、皮尔逊相关系数(Pearson Correlation Coeffident) (1)衡量两个值线性相关的强度 (2)取值范围[-1,1]:正向相关>0;负向相关 (3)公式:

2017-09-20 17:20:48

阅读数 1095

评论数 0

机器学习——非线性回归( Logistic Regression)及应用

1、概率 (1)定义:概率(Probability):对一件事情发生的可能性的衡量。 (2)取值范围:0 (3)计算方法:根据个人置信、根据历史数据、根据模拟数据 (4)条件概率:在事件B已经发生的情况下,事件A发生的概率等于事件A、B同时发生的概率除以B事件发生的概率。 2、逻辑回归(Logi...

2017-09-18 22:03:28

阅读数 12247

评论数 0

机器学习——BP神经网络算法应用(下)

1、BP神经网络算法应用——简单非线性数据集测试(异或:XOR) 将BP神经网络算法应用(上)写好的NeuralNetwork.py文件与要测试的文件XOC_test.py文件放到同一目录下,并在XOC_test.py文件里面包含NeuralNetwork模块 代码如下: #!/...

2017-09-18 16:08:12

阅读数 1013

评论数 0

机器学习——BP神经网络算法应用(上)

1、关于非线性转化方程(non-linear transformation function) sigmoid函数(S曲线)用来作为activation function (1)双曲函数(tanh function) (2)逻辑函数(logistic function) sigmoid函数是一个...

2017-09-17 17:04:44

阅读数 649

评论数 0

机器学习——多元线性回归分析(multiple regression)及应用

1、多元回归分析与简单线性回归区别 多个自变量x 2、多元回归模型 ,其中,是参数,是误差值 3、多元回归方程 4、估计多元回归方程 ,一个样本被用来计算的点估计 5、估计流程(与简单线性回归类似) 6、估计方法 使sum of squares最小, ,运算与简单线性回归类似,涉及线性代数和矩...

2017-09-16 21:03:09

阅读数 9197

评论数 1

提示
确定要删除当前文章?
取消 删除
关闭
关闭