路径判环_最长最短路径判环_负权环判环

路径判环,可以用强连通判断,如果缩点后连通分支数为1且该连通分支的节点个数==图中节点n,则路径为强连通图 最长最短路径判环_可以用SPFA算法:当某一点的进队次数>该点的入度个数,则路成环 负权环_可以用SPFA算法:当某一点的进队次数>n-1时,有负权环

2017-05-05 11:08:59

阅读数:165

评论数:0

NYOJ973天下第一_最长路判环

题目链接 注意:如果可以无限增加真气输出Yes否则输出No 我直接忽略了这一点,以为只要能一直流传就可以了,只要这个图是个强连通图就行了,以为转化率是没用的数据。。。第一次是提交也不提示WC,一直提示的Runtime我也找不到哪里错了。。。 最后看了下同学的才发现我理解错题意了,学到了新知识,用s...

2017-05-05 11:01:42

阅读数:205

评论数:0

NYOJ239月老的难题

题目链接 第一次提交的时候用的是邻接矩阵,因为我看测试数据不多,n 思路:邻接表+匈牙利算法 #include #include #include using namespace std; //int e[505][505]; int match[505]; int book[505]; ...

2017-05-05 08:58:08

阅读数:182

评论数:0

nyoj170网络的可靠性

题目链接 真是对这题无语了,我还以为是是加最少边变成强连通图的题!做了半天发现不对! 还是我理解有问题!只要计算中图中节点的度数,度数 #include #include int in[10005]; int main() { int n; while(~scanf("%d&q...

2017-05-04 21:47:55

阅读数:112

评论数:0

NYOJ127星际之门(一)_n阶完全图的生成树数目

题目链接 n阶完全图所有生成树个数为n^(n-2); 需要复习的同学点击这里知识点 不过测试数据比较水,结果为int类型的就能过~ #include int main() { int T,n; long long s; scanf("%d"...

2017-05-04 21:03:03

阅读数:474

评论数:0

n阶完全树

任意两个vertex之间都有edge连接。但是不包含到自身的连接。无向图的n阶完全图有n(n-1)/2条边有向图的n阶完全图有n(n-1)条边 成树是原图的极小连通子图,包含原图所有n个节点,并且保持图连通的同时,边最少。一个有n个顶点的完全图其生成树有n-1条边。ayley公式是说,一个完全图...

2017-05-04 20:37:17

阅读数:527

评论数:0

nyoj120校园网络_强连通问题

题目链接 还是不仔细!在poj上做过原题,这题只是简单的加了个多组数据,朋友帮助下,终于找到了错误点~ 可以看原题 #include #include #include #include using namespace std; #define min(a,b) a<b?a:b #defin...

2017-05-04 20:15:17

阅读数:155

评论数:0

NYOJ115城市平乱_单源点最短路径(spfa)

题目链接 第一次敲的时候我用的是vector,看题的时候心里还在想着要判重边,把代码都敲完后发现了问题,用vector没办法判断重边啊~又把数据结构赶紧改成了邻接矩阵,同时也发现了自己容易犯的错误!学了新东西就只用新的,不善于思考两者的优劣势,(工欲善其事必先利其器)这句话自己没做到!!真是大忌...

2017-05-04 16:44:20

阅读数:242

评论数:0

NYOJ42一笔画问题_欧拉图(记录节点度数+深搜)

题目链接 一笔画成问题类“七桥问题”每条边走一次,这题是可以回到原点也可以不回到原点。首先要确定是一个无向图,因为一笔画成没有规定一一定要从哪个点或者边开始。 关于欧拉图的理解可以参考下:知识点 对了,首先要先判断这个图的连通性!继而才有可能是欧拉图~ 我用的深搜判断图的连通性,可以用并查...

2017-05-04 15:09:52

阅读数:370

评论数:0

欧拉图和半欧拉图

具有回路的欧拉路径称为欧拉图,不具有回路的欧拉路径称为半欧拉图 若图G中存在这样一条路径,使得它恰通过G中每条边一次,则称该路径为欧拉路径。若该路径是一个圈,则称为欧拉(Euler)回路。  具有欧拉回路的图称为欧拉图(简称E图)。具有欧拉路径但不具有欧拉回路的图称为半欧拉图。 先说...

2017-05-04 10:36:58

阅读数:1218

评论数:0

NYOJ38布线问题_最小生成树

好久没做最小生成题了,只记得算法。。。快比赛了突然在这又出了问题 prim算法要用邻接矩阵适用于顶点少的题,做题习惯直接把这种用矩阵的先给排除了,直接用vector,结构体,导致一道题会用时很久 做题可不能像我这样,看到题要知道用什么算法,还要去想下需要用哪种数据结构(当算法比较多的时候,我们...

2017-05-04 09:59:50

阅读数:164

评论数:0

poj3255Roadblocks_次短路径

题目链接 题意: 某街区共有R条道路,N个路。道路可以双向通行。问1号路口到N号路口的次短路长度是多少?次短路指的比最短路路长度长的次短的路径。同一条边可能经过多次。 思路是竟然是次短路,那么就是和最短相差了一条边(这条边是大于最短路径的最小值)多想下,所以一定是经过某一节点的(u,...

2017-05-03 09:07:24

阅读数:298

评论数:0

poj2060Taxi Cab Scheme_最小覆盖路径问题

题目链接 题意:    租车公司有n个预约, 每个预约有时间和地点, 地点分布在二维整数坐标系上, 地点之间的行驶时间为两点间的曼哈顿距离 (|x1 - x2| + |y1 - y2|)。一辆车可以在运完一个乘客后运另一个乘客, 条件是此车要在预约开始前一分钟之前到达出发地, 问最少需要几辆...

2017-04-29 17:47:48

阅读数:299

评论数:0

割点_去掉割点后的连通分支数(点连通图)

tarjan算法找到割点后,计算出去掉这个点后的图的连通分支数 主要是解释在去掉点后的连通分支数的初始值疑问 参考题:poj1523点击打开链接

2017-04-28 10:43:41

阅读数:389

评论数:0

模板_poj1523SPF_割点以及点连通分支

poj1523题目链接 题意:         图中是否有割点,去掉某个割点后有几个连通分量。 block[i]是去掉割点i后的连通分支个数。 割点:去掉这个点后,连通分支数比没去点这个点的连通分支数多1 #include #include #include using namespace std...

2017-04-28 10:12:38

阅读数:171

评论数:0

强连通分量_双连通分量(转载)

基本概念: 1.割点:若删掉某点后,原连通图分裂为多个子图,则称该点为割点。 2.割点集合:在一个无向连通图中,如果有一个顶点集合,删除这个顶点集合,以及这个集合中所有顶点相关联的边以后,原图变成多个连通块,就称这个点集为割点集合。 3.点连通度:最小割点集合中的顶点数。 4.割边(桥):删...

2017-04-27 13:02:01

阅读数:387

评论数:0

poj3352Road Construction_双连通分量(边)(tarjan算法之一)

poj3352题目链接 题意:给出n个顶点,m条边,求至少添加几条边使这个图为双连通图。 双连通图分为点连通和边连通图,其中他们之间还有着密切关系(具体可以根据自己需要深入了解) 首先根据题意要求和求边连通的方法简单,我们选择用边连通的方法解决问题。 将已经连通的图进行缩点,使之变...

2017-04-27 11:16:49

阅读数:373

评论数:0

poj1364King_差分约束系统

题目链接 题意: 现在假设有一个这样的序列,S={a1,a2,a3,a4...ai...at} 现在给出一个不等式,使得ai+a(i+1)+a(i+2)+...+a(i+n)ki 首先给出两个数分别代表S序列有多少个,有多少个不等式 不等式可以这样描述 给出四个参数第一个数i可以代表序列的第几项...

2017-04-26 14:56:34

阅读数:184

评论数:1

模板_poj1201Intervals_差分约束系统解决(类区间问题)

poj1201题目链接 题意: 第一行输入n,下面输入n个限制条件,条件的格式为 ai bi ci,  0 差分约数系统的含义,其实就是如果有n个变量在m个形如aj-ai>=bk(类似于求最长路径)条件下,求解的此不等式的方法。  而这种不等式的解法其实就是转化为图论的最...

2017-04-24 21:01:15

阅读数:419

评论数:0

poj3159Candies_差分约束系统解决_转换(spfa算法)

真是迷之题啊,第一次用vector超时,不知道是怎么回事!了解数组实现邻接表 题目链接 题意: 给n个人派糖果,给出m组数据,每组数据包含A,B,c 三个数, 意思是B不能比A多超过C个,即B- A<= c 。 最后求第n个同学 比 第1个同学最多多几个糖果。 算了先说下学习的这个新...

2017-04-24 19:33:44

阅读数:209

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭