Hive优化(3)之随机数避免数据倾斜

本文探讨了Hive中数据倾斜的问题,主要表现为任务进度长时间停滞在99%,部分reduce任务数据量过大。倾斜常由join、group by或distinct操作中的key分布不均引起。文中提出了通过map join和设置`hive.groupby.skewindata=true`来优化。针对group by或distinct,文章介绍了如何利用随机函数解决倾斜,通过在特定条件下为key添加随机数,使得原本倾斜的key均匀分布到不同reduce中,从而有效解决了数据倾斜问题。
摘要由CSDN通过智能技术生成

生数据,通常的象是:

  • 务进长时间维持在99%(或100%),看任务监面,发现只有少量(1个或几个)reduce子任未完成。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值