发生数据倾斜时,通常的现象是:
- 任务进度长时间维持在99%(或100%),查看任务监控页面,发现只有少量(1个或几个)reduce子任务未完成。
- 查
本文探讨了Hive中数据倾斜的问题,主要表现为任务进度长时间停滞在99%,部分reduce任务数据量过大。倾斜常由join、group by或distinct操作中的key分布不均引起。文中提出了通过map join和设置`hive.groupby.skewindata=true`来优化。针对group by或distinct,文章介绍了如何利用随机函数解决倾斜,通过在特定条件下为key添加随机数,使得原本倾斜的key均匀分布到不同reduce中,从而有效解决了数据倾斜问题。
发生数据倾斜时,通常的现象是:
3731
2284
1716
315

被折叠的 条评论
为什么被折叠?