
深度学习
文章平均质量分 64
普通网友
这个作者很懒,什么都没留下…
展开
-
历史最全最新时间序列分析相关必读论文、教程及综述资源整理分析
本资源整理了用于时间序列分析 (AI4TS) 的 AI 的论文列表(包含可用代码)、教程和关于最近综述论文,包括时间序列、时空数据、事件数据、序列数据、时间点过程等,相关Top AI Conferences and Journals,一旦被接受的论文在相应的顶级AI会议/期刊上公布,就会尽快(最早)更新。杂项(选定):WWW、AISTAT、CIKM、ICDM、WSDM、SIGIR、ICASSP、CVPR、ICCV 等。有关顶级 AI 会议和期刊上各个领域(DL、ML、DM、CV、NLP、语音等)原创 2023-01-23 10:42:59 · 396 阅读 · 0 评论 -
计算机科学|人工智能相关领域历史最全免费课程整理分享
计算机科学是系统性研究信息与计算的理论基础以及它们在计算机系统中如何实现与应用的实用技术的学科。它通常被形容为对那些创造、描述以及转换信息的算法处理的系统研究。而有些是探讨计算问题的性质,比如计算复杂性理论;还有一些领域专注于怎样实现计算,比如编程语言理论是研究描述计算的方法,而程序设计是应用特定的编程语言解决特定的计算问题,人机交互则是专注于怎样使计算机和计算变得有用、好用,以及随时随地为人所用。本资源整理了计算机科学、人工智能相关十几个领域最新最全的免费视频课程,分享给需要的朋友。原创 2022-12-24 19:40:53 · 172 阅读 · 0 评论 -
历史最全千万级中文MRC(机器阅读理解)抽取式数据集整理分享
资源整理自网络,下载及获取见源地址:https://github.com/sherlcok314159/ChineseMRC-Data。(2)答案选择式:类似高中英语的阅读理解题目,有多个候选答案-选择题;(3)答案抽取式:问题的答案在原文中一定存在,并且为一个连续的区域块;(4)答案生成式:根据给定的文本生成目标答案,阅读理解的终极目标。(1)完形填空式:类似高中英语卷子中的完形填空题目;原创 2022-11-19 12:12:59 · 1218 阅读 · 0 评论 -
历史最全千万级中文MRC(机器阅读理解)抽取式数据集整理分享
资源整理自网络,下载及获取见源地址:https://github.com/sherlcok314159/ChineseMRC-Data。(2)答案选择式:类似高中英语的阅读理解题目,有多个候选答案-选择题;(3)答案抽取式:问题的答案在原文中一定存在,并且为一个连续的区域块;(4)答案生成式:根据给定的文本生成目标答案,阅读理解的终极目标。(1)完形填空式:类似高中英语卷子中的完形填空题目;原创 2022-11-19 11:16:22 · 396 阅读 · 0 评论 -
2022历史最全(视频)扩散模型论文、数据集、博客等整理分享
Diffusion Model(扩散模型)是生成模型的一种,作为近两年CV领域一种比较火的模型。它是一种基于扩散的生成模型被提出,其下有类似的想法,包括扩散概率模型(diffusion probabilistic modelsSohl-Dickstein et al., 2015),噪声条件得分网络(NCSNYang & Ermon, 2019),以及去噪扩散概率模型(DDPMHo et al. 2020)。其实这些本质上都说明扩散模型在生成任务上的效果可以逐步比肩GANs。原创 2022-11-05 15:23:58 · 813 阅读 · 0 评论 -
神经网络无监督领域自适应性NLP领域应用算法分类及论文整理
各式各样的域适应方法旨在通过学习源域和目标域的域不变(domain invariant)特征,从而在目标域没有或少量标签的情况下,将从源域学到的分类器应用于目标域。根据目前已有的研究显示,1)深度神经网络可以很好地学习到数据间的可迁移特征,或者叫做域不变(domain invariant)特征;2)但由于层数的增加,特征由general到task-specific,越来越不适合迁移,但同时也要保证特征足够。顾名思义,就是将某个领域或者任务学习好的知识或模式,应用到到新的不同但相关?原创 2022-09-03 17:32:57 · 253 阅读 · 0 评论 -
2022年整理LeetCode最新刷题攻略分享(附中文详细题解)
所以我整理了leetcode刷题攻略一个超级详细的刷题顺序,每道题目都是我精心筛选,都是经典题目高频面试题,大家只要按照这个顺序刷就可以了,你没看错,README已经把题目顺序都排好了,文章顺序就是刷题顺序!挨个刷就可以,不用自己再去题海里选题了!其实我之前在知乎上回答过这个问题,回答内容大概是按照如下类型来刷数组->链表->哈希表->字符串->栈与队列->树->回溯->贪心->动态规划->图论->高级数据结构,再从简单刷起,做了几个类型题目之后,再慢慢做中等题目、困难题目。...原创 2022-07-30 22:48:58 · 7621 阅读 · 0 评论 -
2022年必读的12本机器学习书籍推荐
它包括各种主题,例如降维,集成学习,回归和聚类分析,神经网络等。这本书解释了线性代数,概率和信息论,数值计算,行业标准技术(例如优化算法,卷积网络,计算机视觉)以及研究主题(例如蒙特卡洛方法,分区函数)的相关概念。本书涵盖了广泛使用的主题,例如贝叶斯方法,回归,分类,神经网络,图形模型,采样方法等,非常适合理解ML,统计,计算机视觉和挖掘。OliverTheobald在他的书中简化了与ML相关的几个复杂主题,例如其基础知识,以及其他技术,例如数据清理,回归分析,聚类,偏差,人工神经网络等。...原创 2022-07-30 22:45:30 · 7059 阅读 · 0 评论 -
2022全网最火免费中文版-《深度学习在图像处理中的应用教程》免费分享
资源整理自网络,下载及获取见源地址https//github.com/WZMIAOMIAO/deep-learning-for-image-processing。本教程是对本人研究生期间的研究内容进行整理总结,总结的同时也希望能够帮助更多的小伙伴。后期如果有学习到新的知识也会与大家一起分享。...原创 2022-07-16 20:14:45 · 598 阅读 · 0 评论 -
推荐系统中对抗性机器学习-文献综述与未来发展整理分享
对抗学习是一种机器学习技术,旨在通过提供欺骗性输入来欺骗模型。最常见的原因是导致机器学习模型出现故障。大多数机器学习技术旨在处理特定的问题集,其中从相同的统计分布(IID)生成训练和测试数据。当这些模型应用于现实世界时,对手可能会提供违反该统计假设的数据。可以安排此数据来利用特定漏洞并破坏结果。。 本资源整理了对抗学习在推荐系统中的应用最近几年的一些经典论文,分享给需要的朋友。 资源整理自网络,资源获取见源地址:https://github.com/sisinflab/adversarial-r原创 2022-06-18 12:29:56 · 376 阅读 · 0 评论 -
历史最全免费医学影像数据集整理分享
本资源主要是为了整理机器学习面试相关知识点的有用链接 (注:目前不打算将一些基础算法的内容加入这个repo里,比如LR、SVM算法在《统计学习方法》里已经得到了很好的解释,面试时可能考到的手推公式在书里已经写的很好了,所以推荐直接看书即可) 资源整理自网络,源地址:https://github.com/linhandev/dataset 内容涉及多次跳转,点击文末“阅读原文“”查看资源详情。目录正在上传…重新上传取消正在上传…重新上传取消内容截图正在上传…重新上传取消正在上传…重新上传取消...原创 2022-06-04 16:29:20 · 410 阅读 · 0 评论 -
深度学习语音分离|抽取必读论文、数据集、代码工具整理分享
语音分离(Speech Separation)这个问题来自于“鸡尾酒会问题”,采集的音频信号中除了主说话人之外,还有其他人说话声的干扰和噪音干扰。语音分离的目标就是从这些干扰中分离出主说话人的语音。根据干扰的不同,语音分离任务可以分为三类:1、当干扰为噪声信号时,可以称为“语音增强”(Speech Enhancement)2、当干扰为其他说话人时,可以称为“多说话人分离”(Speaker Separation)3、当干扰为目标说话人自己声音的反射波时,可以称为“解混响...原创 2022-05-28 16:04:17 · 519 阅读 · 0 评论 -
2022年最新目标跟踪顶会论文及模型整理分享
啥是Object Tracking(目标追踪)?简单点,一幅画面,指定里面一个目标,比如人、动物、车、飞机等等,然后一直死死锁定这个目标,不丢。有啥用?相机跟踪对焦,车辆跟踪,人体、人脸跟踪,手势跟踪等等;比如:经常看见电视上,警察叔叔要抓一些犯事儿的人,监控一调,嫌疑人和其车辆等一锁定,他们之前、之后的行踪就都跑不掉了~(当然这里面往往不只有跟踪)智能交互系统中的手势跟踪:大疆那个用手(掌)控制无人机飞行的功能体验还不...原创 2022-05-08 19:46:52 · 1817 阅读 · 0 评论 -
对话生成(dialogue generation)领域细分及论文整理分享
对话系统或对话代理(Dialogue system)是旨在与人对话的计算机系统。对话系统采用文本,语音,图形,触觉,手势和其他模式中的一种或多种在输入和输出通道上进行通信。对话系统目前是自然语言处理中难度较大的研究课题,其元素尚未定义,但是它们与闲聊机器人不同,而是更倾向于以任务为导向,通过对话的方式帮助用户完成具体的任务。对话生成(dialogue generation)是其中的一个核心算法和功能模块,本资源对dialogue generation相关的方法、领域进行了详细的分类,...原创 2022-04-04 18:56:25 · 410 阅读 · 0 评论 -
双语麻省理工-自然语言处理进阶
课程描述自然语言处理是如何教计算机理解人类语言的工程艺术和科学。自然语言处理是一种人工智能技术,现在它无处不在—自然语言处理让我们可以和手机通话,使用网络回答问题,在书籍和社交媒体中规划讨论,甚至在人类语言之间进行翻译。由于语言丰富、模棱两可,而且对计算机来说非常难理解,这些系统有时看起来像魔法—但这些是我们可以用数据、数学和语言学见解解决的工程问题。本课程将广泛关注自然语言处理的深度学习方法。本学期的大部分时间将集中在最近的迁移学习方法上,这些方法极大地推动了技术的发展。它面向...原创 2022-03-12 21:43:05 · 1359 阅读 · 0 评论 -
多伦多大学-强化学习导论-2022
课程描述这是一门关于不确定条件下强化学习和顺序决策的入门课程,重点在于理解理论基础。我们研究如何使用价值和策略迭代等动态规划方法来解决具有已知模型的顺序决策问题,以及如何扩展这些方法来解决模型未知的强化学习问题。其他主题包括,RL中的函数逼近、策略梯度方法、基于模型的RL,以及探索和应用权衡。本课程将结合课堂讲授和学生阅读的经典和近期论文来讲授。由于重点是理解基础,你应该期望通过数学细节和证明。本课程的必修背景包括熟悉概率论和统计学、微积分、线性代数、最优化和(有监督的)机器学习。...原创 2022-03-05 20:04:33 · 2811 阅读 · 0 评论 -
一文回顾深度学习发展史上最重要经典模型
这篇文章的目的是回顾经过时间考验的,被广泛采用的想法。我将介绍一小部分技术,这些技术涵盖了解现代深度学习研究所必需的许多基本知识。如果你是该领域的新手,那么这是一个很好的起点。深度学习是一个瞬息万变的领域,大量的研究论文和想法可能会令人不知所措。即使是经验丰富的研究人员,也很难告诉公司PR什么是真正的突破。这篇文章的目的是回顾经受住时间考验的想法,这也许是人们应该依靠的唯一参考标准。这些想法或对它们的改进已被反复使用。他们已经“家喻户晓”。如果你今天要开始学...原创 2022-02-07 18:58:53 · 730 阅读 · 0 评论 -
元学习(Meta Learning)最全论文、视频、书籍资源整理
Meta Learning,叫做元学习或者 Learning to Learn 学会学习,包括Zero-Shot/One-Shot/Few-Shot 学习,模型无关元学习(Model Agnostic Meta Learning)和元强化学习(Meta Reinforcement Learning)。元学习是人工智能领域,继深度学习是人工智能领域,继深度学习 -> 深度强化学习、生成对抗之后,又一个重要的研究分支,也是是近期的研究热点,加州伯克利大学在这方面做了大量工作。本文详...原创 2022-02-07 18:56:24 · 2856 阅读 · 0 评论 -
2021最新深度学习自然语言处理模型及原理细节汇编
本简书整理了基于深度学习模型的自然语言处理(NLP)的模型研究的最新趋势。它涵盖了深度学习模型(如递归神经网络(RNN),卷积神经网络(CNN)和强化学习)背后的理论描述和实现细节,用于解决各种NLP任务和应用常见。本简书包含NLP任务(例如机器翻译,问题解答和对话系统)的最新研究进展。本简书内容主要包括:整合与NLP研究相关最新的重要信息,例如:最新的结果,新的概念和应用,新的基准数据集,代码/数据集等等。创建一个友好而开放的资源,以帮助指导研究人员和任何有...原创 2021-12-11 17:37:38 · 373 阅读 · 0 评论 -
麻省理工学院-面向生命科学的深度学习2021
课程描述提出了解决生命科学中计算问题的创新方法,重点是基于深度学习的方法与传统方法的比较。主题包括蛋白质-DNA相互作用,染色质可及性,法规变异解释,医学影像理解,病历理解,治疗设计和实验设计(干预措施的选择和解释)。专注于机器学习模型的选择,鲁棒性和解释。团队使用TensorFlow或其他框架完成了一个多学科的最终研究项目。提供对每个生命科学问题的全面介绍,但要依靠学生理解概率问题的表述。修读研究生版的学生可以完成其他作业。kchq:麻省理工学院-《面向生命科学的...原创 2021-11-27 20:32:04 · 323 阅读 · 0 评论 -
麻省理工学院2021最新-深度学习导论
课程描述麻省理工学院的深度学习算法入门课程,应用于计算机视觉、自然语言处理、生物学等等!学生将学习深度学习算法的基础知识,并学习在Tensorflow中构建神经网络的实践经验。课程以项目建议书竞赛结束,由员工和行业赞助商小组提供反馈。学生需要具备微积分(也就是取导数)和线性代数(也就是矩阵乘法)等基础知识,整个课程进行过程中都需要这些知识!Python方面的经验有帮助但不是必须的。kehq:麻省理工学院2021最新-《深度学习导论》课程视频及ppt分享课程主页ht...原创 2021-11-20 17:19:13 · 882 阅读 · 0 评论 -
千万级中文公开免费聊天语料数据分享
分享一个包含千万级聊天语料的资源。地址:https://github.com/codemayq/chaotbot_corpus_Chinese该库是对目前市面上已有的开源中文聊天语料的搜集和系统化整理工作该库搜集了包含·chatterbot·豆瓣多轮·PTT八卦语料·青云语料·电视剧对白语料·贴吧论坛回帖语料·微博语...原创 2021-11-20 17:14:39 · 2068 阅读 · 0 评论 -
自动驾驶最全基础知识、课程、论文、数据集、开源软件等资源整理分享
自动驾驶汽车(Autonomous vehicles)又称无人驾驶汽车、电脑驾驶汽车、或轮式移动机器人,是一种通过电脑系统实现无人驾驶的智能汽车。在20世纪已有数十年的历史,21世纪初呈现出接近实用化的趋势。自动驾驶汽车依靠人工智能、视觉计算、雷达、监控装置和全球定位系统协同合作,让电脑可以在没有任何人类主动的操作下,自动安全地操作机动车辆。资源整理自网络,源地址:https://github.com/manfreddiaz/awesome-autonomous-vehicles...原创 2021-11-20 17:11:59 · 2432 阅读 · 0 评论 -
ML新-机器学习算法入门
本书介绍一种最常见和最广泛使用的机器学习模型是线性回归。线性回归是一种非常直观的监督学习算法,顾名思义,它是一种回归技术。这意味着当我们有连续值的标签时,例如汽车价格或房间温度,就会使用它。此外,正如它的名字所暗示的那样,线性回归寻求的是对线状数据的模糊处理。这是什么意思?bshq:ML新书-《机器学习算法入门》免费pdf分享想象一下,你收到了一个由汽车组成的数据集,其中每辆汽车的行驶里程数以及价格。在这种情况下,让我们假设您正在尝试训练一个机器学习...原创 2021-11-13 12:07:20 · 140 阅读 · 0 评论 -
2021年图神经网络头部应用5大领域
在今年初,感觉Graph神经网络(GNN)成为互联网圈的流行语。作为这个领域的研究人员,我为自己的工作感到自豪(至少不感到羞愧)。但并非总是如此:三年前,忙于研究GAN和Transformers,我对它们的总体印象是我正在研究特殊的通用的问题。嗯,这个领域已经相当成熟了,在这里我建议看看我们最近拥有的GNN的顶级应用。推荐系统自然地,图是在用户与电子商务平台中的产品交互的上下文中出现的,因此,有许多公司采用GNN进行产品推荐。一个标准的用例是在用户和物品图之间建模交互,以某种...原创 2021-11-13 12:05:19 · 483 阅读 · 0 评论 -
免费-计算机视觉、机器人及机器学习线性代数基础
近年来,计算机视觉、机器人、机器学习和数据科学一直是推动关键领域技术进步的主要助力。阅读上述任何一个领域的论文或书籍的人多少都曾遇到一些没有听说过的专业术语,比如说一些奇异的术语,如核主成分分析、岭回归、lasso回归、支持向量机(SVM)、拉格朗日乘子、KKT条件等。支持向量机会用某种超级套索来追逐牛群吗?当然不会。但是人们很快就会发现,在伴随着一个新领域的行话背后,隐藏着许多来自最优化理论的“经典”线性代数知识和技术。主要的挑战来了:为了理解和使用机器学习、计算机视觉等工具,一个人需要有坚实...原创 2021-11-06 18:49:19 · 1267 阅读 · 0 评论 -
互联网面试常见100题精析-题目剖析、解题思路、代码分析、问题扩展
关于本书 本书目前共整理了105道 高频面试算法题目,全部采用漫画图解的方式。该教程目前共有 11w 人阅读。面向 算法小白 和 初中阶读者。所有代码均在 leetcode上测试运行。资源整理自网络,源地址:https://github.com/geekxh/hello-algorithm文末付本书最新pdf免费版下载地址。本教程阅读门槛本教程基本没有学习门槛。因为在每道题目中,我都会尽量去串基础...原创 2021-10-31 17:17:43 · 305 阅读 · 0 评论 -
斯坦福大学最新-机器学习导论
课程描述机器学习导论,讲解有监督和无监督学习问题的表述。回归和分类。数据标准化和特征工程。损失函数选择及其对学习的影响。正则化及其在控制复杂性中的作用。验证和过拟合。对异常值的鲁棒性。简单的数值实现。对来自各种工程和其他学科的数据进行实验。 bkxq:斯坦福大学最新-《机器学习导论》课程视频及ppt分享课程首页http://ee104.stanford.edu/lectures.html课程大纲课程视频截图bkqh:...原创 2021-10-17 11:26:49 · 354 阅读 · 0 评论 -
21年机器学习必读-模式,预测,动作-一个关于机器学习的故事
本书介绍这是一本面向机器学习领域所有学生的书。涵盖的材料支持一个学期的机器学习研究生所有知识点。适合各种背景的读者;一些概率、微积分和线性代数的经验就足够了。从概念上来说,本书既是对新事物的旧看法,也是对旧事物的新看法。从一个角度来看,回到根源,强调模式分类。今天机器学习的实践与20世纪60年代的模式分类惊人地相似,只是最近几十年有一些显著的创新。bshq:21年机器学习必读书籍-《模式,预测,动作-一个关于机器学习的故事》免费分享这并不是低估最...原创 2021-10-17 11:24:31 · 177 阅读 · 0 评论 -
2021年自然语言处理校招社招实习必备知识点盘点分享
本资源整理了自然语言处理领域中常见的一些知识点,并给出了答案,分享给大家。对于准备自然语言处理校招、社招、实习岗位的朋友,可以好好研读一下。资源整理自网络,资源获取见源地址:https://github.com/km1994/nlp_paper_study目录论文资源列表...原创 2021-10-10 15:16:53 · 199 阅读 · 0 评论 -
机器学习-可解释机器学习局限性
本书讲解了当前可解释机器学习方法中存在的局限性。这些方法包括partial dependence plots(PDP)、累积局部效应(Accumulated Local Effects,ALE)、排列特征重要性、leave-one-covariate out(LOCO)和局部可解释模型不可知解释(LIME)。所有这些方法都可以用来解释经过训练的机器学习模型表现,或预测机器学习模型表现。但是在以下情况下,这些解释方法可能不太有效:如果模型对交互进行建模(例如,当使用随机森林时)...原创 2021-09-25 21:17:28 · 781 阅读 · 0 评论 -
机器学习经典-贝叶斯推理与机器学习
我们生活在一个数据量巨大,规模不断增加的世界中。这些数据来自科学(生物信息学,天文学,物理学,环境监测)和商业(客户数据库,金融交易,引擎监测,语音识别,监视,搜索)的许多不同来源。因此,掌握有关如何处理和从此类数据中提取价值的知识是一项关键且日益重要的技能。我们的社会还期望最终能够以一种自然的方式与计算机互动,以便计算机可以与人类“交谈”,“理解”他们所说的话并“理解”周围的视觉世界。这些都是艰巨的大规模信息处理任务,对计算机科学和相关领域提出了严峻的挑战。同样,人们希望控制越来越复杂的系统,...原创 2021-09-25 21:04:43 · 135 阅读 · 0 评论 -
2021年自然语言处理校招社招实习必备知识点盘点分享
本资源整理了自然语言处理领域中常见的一些知识点,并给出了答案,分享给大家。对于准备自然语言处理校招、社招、实习岗位的朋友,可以好好研读一下。资源整理自网络,资源获取见源地址:https://github.com/km1994/nlp_paper_study目录论文资源列表...原创 2021-09-25 21:02:18 · 156 阅读 · 0 评论 -
肖桐、朱靖波老师-机器翻译统计建模与深度学习方法
分享一本由肖桐、朱靖波老师编著,东北大学自然语言处理实验室 · 小牛翻译联合出品的新书《机器翻译统计建模与深度学习方法》。本书中文编著,对机器学习相关历史和涉及知识进行详细、全面、深入讲解,非常值得深入阅读、学习。资源整理自网络,感谢两位老师及相关团队辛勤整理和无私分享,源地址:https://opensource.niutrans.com/mtbook/index.html本书全面回顾了近三十年内机器翻译的技术发展历程,并围绕统计建模和深度学习两个主题对...原创 2021-09-19 12:28:02 · 218 阅读 · 0 评论 -
华盛顿大学2021年-深度神经网络应用
课程描述深度学习包含一系列令人振奋的神经网络新技术。通过结合先进的训练技术和神经网络架构组件,现在有可能创建神经网络,可以处理表格数据、图像、文本和音频数据。深度学习允许神经网络以类似人脑功能的方式学习信息的层次结构。本课程将向学生介绍经典的神经网络结构,卷积神经网络(CNN),长短期记忆(LSTM),门控递归神经网络(GRU),一般对抗网络(GAN)和强化学习。这些模型在计算机视觉、时间序列、安全、自然语言处理和数据生成方面被广泛应用。高性能计算方面将展示如何在图形处理单元和网...原创 2021-09-19 12:26:26 · 246 阅读 · 0 评论 -
深度学习机器学习理论及应用实战-必备知识点整理分享
本资源整理了深度学习及机器学习快速上手必备的数学基础知识及应用实战项目,包括:基础知识Basic knowledge、机器学习MachineLearning、深度学习DeepLearning2、自然语言处理BERT,持续更新中。含大量注释及数据集,力求每一位能看懂并复现。资源整理自网络,源地址:https://github.com/ben1234560/AiLearning-Theory-Applying内容涉及多次跳转,点击文末“阅读原文“”查看资源详情。...原创 2021-09-19 12:23:07 · 182 阅读 · 0 评论 -
2021年预训练语言模型及微调的最新进展
对预训练语言模型(LM)进行微调已成为在自然语言处理中进行迁移学习的事实上的标准。在过去的三年中(Ruder,2018),微调(Howard&Ruder,2018)取代了预训练embedding特征提取的使用(Peters等人,2018),而预训练语言模型则受到青睐,由于提高了样本效率和性能(Zhang和Bowman,2018),因此模型对翻译(McCann等,2018),自然语言推理(Conneau等,2017)和其他任务进行了训练。这些方法的经验成功导致开发了更大的模型(Devlin等,20...原创 2021-09-19 12:19:59 · 1163 阅读 · 0 评论 -
谷歌云系统构建-构建、实现和维护稳定且安全云系统的最佳方案
如果一个系统从根本上来说是不安全的,那么它真的可以被认为是可靠的吗?或者如果不可靠,它能被认为是安全的吗?成功地设计、实施和维护系统需要对整个系统生命周期的承诺。只有当安全性和可靠性是系统架构的核心要素时,这种承诺才是可能的。然而,这两者通常都是事后的想法,只有在事故发生后才会考虑,从而导致昂贵且有时困难的改进。在一个许多产品都连接到互联网、云技术变得越来越普遍的世界里,设计带来的安全性越来越重要。文末付本书免费版pdf下载地址。我们越是依赖这些系统,...原创 2021-09-13 19:18:30 · 116 阅读 · 0 评论 -
李宏毅最新-深度学习/机器学习2021
课程描述由国立台湾大学李宏毅老师主讲的纯中文版,2021年机器学习(深度学习)开课了,课程相关的部分资源已经release出来了,今年课程新增了很多新的前沿的内容,分享给大家。 bkhq:https://mp.weixin.qq.com/s?__biz=MzIxNDgzNDg3NQ==&mid=2247495566&idx=2&sn=5af779d9fbae5584565692268fea2681&chksm=97a3245aa0d4ad4ce7...原创 2021-09-04 18:54:40 · 218 阅读 · 0 评论 -
2020年新-机器学习算法入门
本书介绍一种最常见和最广泛使用的机器学习模型是线性回归。线性回归是一种非常直观的监督学习算法,顾名思义,它是一种回归技术。这意味着当我们有连续值的标签时,例如汽车价格或房间温度,就会使用它。此外,正如它的名字所暗示的那样,线性回归寻求的是对线状数据的模糊处理。这是什么意思?behq:https://mp.weixin.qq.com/s?__biz=MzIxNDgzNDg3NQ==&mid=2247495411&idx=4&sn=b69adc5a0488...原创 2021-08-28 21:58:03 · 209 阅读 · 0 评论