
深度学习优化策略汇总
文章平均质量分 61
普通网友
这个作者很懒,什么都没留下…
展开
-
Transformer六周年:当年连NeurIPS Oral都没拿到,8位作者已创办数家AI独角兽
当年大会共收到 3240 篇论文投稿,其中 678 篇被选为大会论文,Transformer 论文就是被接收的论文之一,在这些论文中,40 篇为 Oral 论文,112 篇为 Spotlight 论文,3 篇最佳论文,一篇 Test of time award 奖项,Transformer 无缘奖项。不过,也有论文足够幸运,能够第一时间被发现,比如何恺明等人提出的 ResNet,当年获得了 CVPR 2016 最佳论文,这一研究当之无愧,得到了 AI 顶会的正确认可。2021 年,她也离开谷歌。原创 2023-06-20 15:45:16 · 96 阅读 · 0 评论 -
iPhone上运行 70亿参数大模型,来自陈天奇团队最新成果
来源 | 量子位 | 公众号 QbitAI跑大语言模型的门槛,已经降低到一部iPhone了。当然安卓版本也有,只要手机RAM够6G,听上去是不是比用2060还要震撼?而且这次还是开箱即用的版本!这个项目名为MLC LLM,与之前的WebLLM同出自知名学者陈天奇团队。截止目前已在GitHub上斩获超6800星。目前可以测试的模型有羊驼家族(基于LLaMA)的RedPajama和Vicuna。可选模型参数分别为30亿和70亿,与很多在线Demo规模也相当了。原创 2023-06-09 17:10:35 · 161 阅读 · 0 评论 -
陶哲轩宣布主持白宫生成式AI工作组,李飞飞、Hassabis发表演讲
对于每天执行的任务,我已经开发了足够的技术来优化我的工作流程,人工智能工具对我来说并没有太多的增值。对于那些我有一些专业知识,但很少实践的任务,人工智能工具是有帮助的:通常我可以用它们来创建输出的初稿,然后我可以验证和修改,或至少作为灵感来源使用。他博客中表示,这一小组主要研究生成式人工智能技术在科学和社会产生更广泛的影响,包括流行的基于文本的大语言模型(如ChatGPT),图像生成的扩散模型(如DALL-E2、Midjourney),以及科学应用模型(如蛋白质设计或天气预报)。原创 2023-05-19 19:09:27 · 179 阅读 · 0 评论 -
一大波特斯拉人形机器人上线,马斯克震撼官宣2款新车!
并畅想「在未来,我们认为FSD一定会比人类驾驶员安全得多,一定比人类驾驶员安全十倍,我觉得这样的安全性是可以实现的,这是很重要的成就。「这是不可能的,特斯拉将在Real World AI或者AGI中扮演非常重要的角色,因此,我得确保这件事很好地进行。马斯克称,「需求有多大,我们就生产多少」。从网友拍的视频中可以清晰地看到:那个被称为Giga Wiper的巨大雨刷,粗壮的悬架,以及可伸缩的盖板结构。就目前的工作,马斯克表示自己不断忍受媒体的负面报道,「有时工作的痛苦程度非常难以忍受」,但是他依旧保持乐观。原创 2023-05-19 19:07:08 · 292 阅读 · 0 评论 -
只限今日免费,Midjourney 5.1震撼更新!逼真到给跪,中国情侣细节惊艳,3D视频大片马上来
无论是粗糙的3D动画,还是用手机拍出来的摇摇晃晃的视频,Gen-1都可以升级出一个不可思议的效果。这个raw模式的作用是可以维持V5的逻辑,因为V5.1在生图时,更有创造力,并会更多依据其观点判断图像内容和形式。有了Runway Gen-2,你就能用任意的图像、视频或文本,生成一段酷炫大片,想要啥风格,就有啥风格。此外,V5.1支持更简单的prompt,能产出更加具有创意的图,还最新上线了style raw模式。虽说是在V5大版本上更新,但升级后的V5.1创造力解禁,出图更加丝滑,简直是对视觉的爆点冲击。原创 2023-05-12 19:18:33 · 1173 阅读 · 0 评论 -
华为孟晚舟当值首秀:2030年AI算力将增长500倍!
围绕着数字化,华为在基础软件领域,已发布欧拉和鸿蒙操作系统、毕昇编译器、高斯数据库、昇思AI框架等,并将OpenEuler(欧拉)、OpenHarmony贡献给开放原子开源基金会,通过软件开源发展产业生态。孟晚舟表示,2026年全球数字化转型支出将达到3.4万亿美元,这是整个产业链的新蓝海,无论是正在进行数字化转型的企业,还是支撑数字化转型的企业,均面临巨大的市场空间和经济收益。孟晚舟表示,就任轮值董事长后,依照公司《治理章程》,我们是体制的接班、制度的接班,从来都不是个人接班,而是集体领导。原创 2023-04-28 18:39:23 · 1774 阅读 · 0 评论 -
ChatGPT已过时?Auto-GPT迅速走红,无需人类插手自主解决复杂任务,GitHub标星5万
Auto-GPT 的迷人之处,在于它能够对 AI 的运行步骤做拆分,真正把 GPT 模型出色的文本生成能力转化为可用功能。在前面的 Chef-GPT 示例中,它的“思考”方式如下:“我将搜索即将到来的节假日,据此创建出独特的食谱。有鉴于此,新型应用 Auto-GPT 应运而生,它允许 AI 自主行动 — 即实现“自我提示”,并彻底改变我们对于这项技术的看法和感受。无论是 AGI 的开端、还是 AI 标准化道路上的重要一步,Auto-GPT 的出现必然引发新的哲学思考。也许只有时间能给出答案。原创 2023-04-21 19:02:32 · 562 阅读 · 0 评论 -
拥抱还是革命,ChatGPT时代 AI专家给出15条科研生存之道
你是学术机构的人工智能研究员吗?你是否担心自己无法应对当前人工智能的发展步伐?您是否觉得您没有(或非常有限)访问人工智能研究突破所需的计算和人力资源?你并不孤单; 我们有同样的感觉。越来越多的人工智能学者不再能找到资源在全球范围内保持竞争力。这是一个最近出现的现象,但正在加速发展,私营公司将大量计算资源投资于前沿AI研究。在这里,我们将讨论学术科研工作者如何在保持竞争力。我们还简要讨论了大学和私营部门如果愿意,可以做些什么来改善这种状况。这不是一个详尽的策略列表,你可能不同意所有的策略,但它有助于开始讨论。原创 2023-04-21 18:48:21 · 1655 阅读 · 0 评论 -
“心机boy”马斯克:明面上呼吁暂停先进AI研发,背地里悄悄买1万块GPU推进大模型项目
现在来看,彼时的集体呼吁更像是一场“暗渡陈仓”的闹剧,也是马斯克以及一众被 OpenAI 生态伙伴们甩在身后的科技巨头们的缓兵之计,毕竟签名者中就有正亲自参与 AI 模型研究和部署的人士,比如 Stability AI 的 CEO Emad Mostaque。他和一众反对继续研发 AI 的业内大佬们给出的理由是:我们已经有了 GPT-4,现在应该先缓一缓,别急着搞出比它更强大的新型 AI 系统。有媒体报道,实际上,马斯克反对的不是 AI,而是 OpenAI 和 GPT。整理 | 冬梅、核子可乐。原创 2023-04-14 19:26:17 · 593 阅读 · 0 评论 -
GPT-5年底上线?初创公司Runway CEO再爆料:OpenAI员工相信GPT-5有望成AGI
参照目前GPT-3.5和GPT-4的情况,GPT-4.5很可能也会为GPT-5的创新奠定坚实基础。通过解决GPT-4的局限性并引入新的改进,GPT-4.5将在塑造GPT-5发展过程中发挥关键作用。最近,Runway CEO关于GPT-5的爆料,又被网友们翻了出来,讨论得热火朝天。根据预测,GPT-5将在GPT-4的基础上,带来一系列令人兴奋的功能和增强的性能,比如在可靠性、创造力和适应复杂任务方面的全面超越。在和网友的辩论中,Siqi Chen表示,达到AGI的GPT-5,或许已经不需要prompt了。原创 2023-04-14 19:25:02 · 577 阅读 · 0 评论 -
比尔·盖茨最新分享:ChatGPT的发展,不止于此
微软将GPT描述为“副驾驶”(Copilot),我们把它完全集成到 Office 的产品中,帮助改进用户的工作,比如帮助你编写电子邮件,管理你的收件箱。这是因为 AI 对你的问题的上下文理解不够好,它不知道是应该说一个不存在的酒店名字,还是告诉你有可用房间的真实酒店。人工智能,对个人而言,更像是一个数字人助理:它看你最近的电子邮件,了解你参加的会议,阅读你读过的文章,以及了解你不想被打扰的事情。这是一个有趣的观察模型,它说明AI的情感表达很像人类了,但这并不是一个有意义的独立性指标。人声鼎沸,十分热闹。原创 2023-03-31 19:43:01 · 3988 阅读 · 1 评论 -
GPT-4老板:AI可能会杀死人类,已经出现我们无法解释的推理能力
来源: 量子位 微信号:QbitAI“AI确实可能杀死人类。这话并非危言耸听,而是OpenAI CEO奥特曼的最新观点。而这番观点,是奥特曼在与MIT研究科学家Lex Fridman长达2小时的对话中透露。不仅如此,奥特曼谈及了近期围绕ChatGPT产生的诸多问题,坦承就连OpenAI团队,也根本没搞懂它是如何的:从ChatGPT开始,AI出现了推理能力。但这种能力出现的原因。唯一的途径是向ChatGPT提问,从它的回答中摸索它的思路。原创 2023-03-31 19:38:42 · 1344 阅读 · 0 评论 -
基于pytorch+Resnet101加GPT搭建AI玩王者荣耀
在图中设定下,Android指针坐标(X,Y)对应minitouch坐标(1080-Y,X):即在点按屏幕中某点时,安卓调试显示的(X,Y)在.json文件中的坐标应为(1080-Y,X)。'check_json.py'为调试和生成本地.json按键映射文件的脚本。此外,'处理训练数据5.py'中:‘加一技能’,‘加二技能’,‘加三技能’,‘购买’变量也许进行同样处理。运行 “训练数据截取_A.py” 时可以通过按键操控角色,这时就可以生成训练用的数据,如果没有操控则会生成一个空文件夹和空json文件。原创 2023-03-24 20:27:04 · 11107 阅读 · 18 评论 -
三大维度拆解ChatGPT/GPT-4!让巨头们兴奋的技术真相【附下载】
发源于OpenAI,成名于生成式语言,ChatGPT火得太快了。2022年11月,OpenAI推出ChatGPT聊天机器人,以对话的形式与用户进行连续性的交互,上线2个月后用户数超过1亿,用户数量增长迅猛。ChatGPT 属于 AIGC 的具体应用,相比过去的 AI 产品,在模型类型、应用领域、商业化等层面也呈现出新的特点。本期的智能内参,我们推荐东莞证券和华泰证券的报告《大厂加大类 ChatGPT 布局力度,商业应用有望加速落地》《ChatGPT:深度拆解》,解析最近大火的ChatGPT的技术原理和国内商原创 2023-03-24 20:26:11 · 3108 阅读 · 0 评论 -
66天自然语言处理入门到精通实战计划及资源分享
自然语言处理是语言学、计算机科学和人工智能的一个领域,涉及计算机和人类语言之间的相互交互,特别是如何编程计算机来处理和分析大量的自然语言数据。本资源整理了自然语言处理所需的各种库、依赖项和模块的等,经过66天的自然语言处理数据实战所需要的所有资源,掌握自然语言处理各项任务及模型。内容涉及多次跳转,点击文末“阅读原文“”查看资源详情。原创 2023-02-05 18:04:24 · 198 阅读 · 0 评论 -
深度学习计算机视觉相关代码可复现论文整理分享
最近在读论文的时候会发现一个问题,有时候论文核心思想非常简单,核心代码可能也就十几行。但是打开作者release的源码时,却发现提出的模块嵌入到分类、检测、分割等代码框架中,导致代码比较冗余,对于特定任务框架不熟悉的我,很难找到核心代码,导致在论文和网络思想的理解上会有一定困难。因此,作为【论文复现项目】的补充,本项目的宗旨也是让世界上没有难读的论文。原创 2023-01-15 11:12:18 · 669 阅读 · 0 评论 -
推荐系统徐偏差(debias)相关的技术、论文及代码整理分享
近些年来关于推荐系统的研究主要集中在如何设计更好的模型来适应用户行为数据,进而提升推荐质量。然而,由于用户行为数据是观察所得(Observational)而不是实验所得(Experimental),因此会存在各种偏差(bias),如用户对物品的选择偏差、系统对物品的曝光偏差等,直接拿模型拟合数据而忽视偏差会导致性能欠佳,在一定程度上也损害了用户对推荐系统的体验和信任,因此,去除推荐系统偏差(Recommendation debias)已经成为推荐系统领域研究的一个新方向。原创 2023-01-07 12:12:46 · 274 阅读 · 0 评论 -
人工智能芯片设计相关架构/设计相关论文整理分享
技术手段方面AI市场的第一颗芯片包括现成的CPU,GPU,FPGA和DSP的各种组合。虽然新设计正在由诸如英特尔、谷歌、英伟达、高通,以及IBM等公司开发,但还不清楚哪家的方法会胜出。AI芯片该使用什么方法原理去实现,仍然众说纷纭,这是新技术的特点,探索阶段百花齐放,这也与深度学习等算法模型的研发并未成熟有关,即AI的基础理论方面仍然存在很大空白。这是指导芯片如何设计的基本前提。AI芯片也被称为AI加速器或计算卡,即专门用于处理人工智能应用中的大量计算任务的模块(其他非计算任务仍由CPU负责)。原创 2022-12-31 15:27:08 · 422 阅读 · 0 评论 -
计算机视觉(CV)领域Transformer最新论文及资源整理分享
Transformer由论文《Attention is All You Need》提出,现在是谷歌云TPU推荐的参考模型。Transformer改进了RNN最被人诟病的训练慢的缺点,利用self-attention机制实现快速并行。并且Transformer可以增加到非常深的深度,充分发掘DNN模型的特性,提升模型准确率。资源整理自网络,源地址:https://github.com/DirtyHarryLYL/Transformer-in-Vision。原创 2022-12-31 15:24:42 · 1006 阅读 · 0 评论 -
计算机视觉领域多任务学习相关论文、数据集、网络结构等资源整理分享
MTL 是机器学习中一个很有前景的领域,其目标是利用多个学习任务中所包含的有用信息来帮助为每个任务学习得到更为准确的学习器。我们假设所有任务(至少其中一部分任务)是相关的,在此基础上,我们在实验和理论上都发现,联合学习多个任务能比单独学习它们得到更好的性能。近几年工业界/学术界有关多任务学习的研究和成功实践层出不穷:比如推荐系统里的谷歌的MMOE,SNR,MOSE,Youtube排序模型,阿里的ESSM,腾讯最新的PLE;NLP里微软的MT-DNN,以及最近hotpotQA榜单上的IRRR模型。原创 2022-12-20 00:16:20 · 331 阅读 · 0 评论 -
历史最全机器学习/深度学习/人工智能专业术语表中英对照表
本资源收录了机器学习课程用到的相关术语,涉及机器学习基础、机器学习理论、Applied Math、SVM、Ensemble、DNN、Regularization、Matrix Factorization、Optimization、CNN、 Auto Encoder、RNN、Representation、Network Embedding、GAN、Adversarial Learning、Online Learning、Reinforcement Learning、AutoML、Graphic Model、T原创 2022-10-22 09:53:47 · 165 阅读 · 0 评论 -
历史最全机器学习/深度学习/人工智能专业术语表中英对照表
本资源收录了机器学习课程用到的相关术语,涉及机器学习基础、机器学习理论、Applied Math、SVM、Ensemble、DNN、Regularization、Matrix Factorization、Optimization、CNN、 Auto Encoder、RNN、Representation、Network Embedding、GAN、Adversarial Learning、Online Learning、Reinforcement Learning、AutoML、Graphic Model、T原创 2022-10-22 09:52:35 · 193 阅读 · 0 评论 -
2022年最新 100G+ 亿级+ 免费互联网数据集 整理分享
网页数据(6.4G)包含53294027个网页。其中有标题的网页有48577906个,有介绍的网页有35971682个。资源整理自网络,源地址:https://github.com/RimoChan/internet-dataset。· 反向索引数据(39.7G)包含17669628个词,每个词对应1~28000个网页。· 域名数据(2.7G)包含6257636个域名,来自1938617个一级域名。原创 2022-10-14 22:21:07 · 780 阅读 · 0 评论 -
自动驾驶最全基础知识、课程、论文、数据集、开源软件等资源整理分享
自动驾驶汽车(Autonomous vehicles)又称无人驾驶汽车、电脑驾驶汽车、或轮式移动机器人,是一种通过电脑系统实现无人驾驶的智能汽车。在20世纪已有数十年的历史,21世纪初呈现出接近实用化的趋势。自动驾驶汽车依靠人工智能、视觉计算、雷达、监控装置和全球定位系统协同合作,让电脑可以在没有任何人类主动的操作下,自动安全地操作机动车辆。本文整理了自动驾驶相关的各种资源,包含自动驾驶基础知识点、免费课程、经典论文、研究实验室、公开数据集、开源软件、公司等资源,分享给需要的朋友,需要自取。原创 2022-10-14 22:17:01 · 1616 阅读 · 0 评论 -
2022年人工智能专家进阶核心算法、知识点路线图
本资源整理了人工智能领域进阶算法、知识点线路图。包含基础知识点-> 数学基础知识 -> 机器学习常见模型迭代路径 -> 深度学习常见模型迭代路径 -> 数据工程师,大数据工程师迭代路径,完整过程。原创 2022-10-14 22:15:26 · 217 阅读 · 0 评论 -
互联网求职必读-ACM算法日常之算法·进阶石-系列书籍-免费整理分享
现在写程序基本上离不开github,每种语言如C/C++、Java、Python还是golang等都会将很多库开源在github上面,本篇文章就和大家聊聊如何使用git的基本操作,来参与github上的开源项目。很多童鞋喜欢直接使用git命令,但是对于新手,我更推荐github desktop客户端来操作git项目,下面一起来看看这个颜值超高的客户端App吧。资源整理自网络,下载及获取见源地址:https://github.com/acm-clan/algorithm-stone。原创 2022-10-03 19:17:33 · 182 阅读 · 0 评论 -
2022年历史最全可信图神经网络论文、工具、资源等整理分享
GNN的历史最早可以追溯到 2005 年,Gori 等人第一次提出 GNN 概念,用 RNN 来处理无向图、有向图、标签图和循环图等。图神经网络(Graph Neural Network,GNN)是指使用神经网络来学习图结构数据,提取和发掘图结构数据中的特征和模式,满足聚类、分类、预测、分割、生成等图学习任务需求的算法总称。除了图卷积神经网络,GNN主流算法还包括有图自编码器、图生成网络、图循环网络以及图注意力网络。原创 2022-09-24 20:05:41 · 687 阅读 · 0 评论 -
过去的2021年图神经网络头部应用5大领域
在仅使用FDA批准的药物库中的约2500个分子对其进行训练后,Chemprop就被应用于更大的数据集,包括包含分子Halicin的Drug Repurposed Hub,该名称从“ 2001:太空漫游”电影中的HAL 9000重命名。在遵守密度和布线拥塞的限制的同时,确定每个组件的位置是一项费力的过程,这仍然是电气工程师的工作。在Facebook的作品中,可以将流行的CV数据集COCO中的对象放在画布中,指定对象的位置和大小,并从中创建场景图。吸附物(小连接分子)和催化剂表面的初始状态和松弛状态的示例。原创 2022-09-11 20:40:16 · 292 阅读 · 0 评论 -
最近几年-基于深度学习自然语言处理的推荐系统-必读论文整理分享
基于内容的推荐(Content-based Recommendation)是信息过滤技术的延续与发展,它是建立在项目的内容信息上作出推荐的,而不需要依据用户对项目的评价意见,更多地需要用机器学习的方法从关于内容的特征描述的事例中得到用户的兴趣资料。因此,对于推荐内容的理解对于推荐系统来说非常重要的。本资源整理了基于自然语言处理内容理解的推荐系统,整理了最近几年NLP在推荐系统中相关的应用,涉及基于知识图谱的推荐、基于文本的推荐及广告、基于对话系统的推荐、基于上下文推荐和可解释下推荐。原创 2022-09-03 17:36:40 · 428 阅读 · 0 评论 -
2022年自然语言处理校招社招实习必备知识点盘点分享
本资源整理了自然语言处理领域中常见的一些知识点,并给出了答案,分享给大家。对于准备自然语言处理校招、社招、实习岗位的朋友,可以好好研读一下。原创 2022-08-21 12:43:47 · 214 阅读 · 0 评论 -
NLP各领域(信息抽取|分词|词性标注|知识图谱等)必读综述性论文整理分享
自然语言处理( Natural Language Processing, NLP)是计算机科学领域与人工智能领域中的一个重要方向。它研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法。自然语言处理是一门融语言学、计算机科学、数学于一体的科学。自然语言处理主要应用于机器翻译、舆情监测、自动摘要、观点提取、文本分类、问题回答、文本语义对比、语音识别、中文OCR等方面 [2]。资源整理自网络,源地址:https://github.com/thunlp/SOS4NLP。...原创 2022-08-13 20:14:32 · 905 阅读 · 0 评论 -
历史最全深度学习经典架构、模型及技巧及其代码实现整理分享
深度学习是学习样本数据的内在规律和表示层次,这些学习过程中获得的信息对诸如文字,图像和声音等数据的解释有很大的帮助。深度学习是一个复杂的机器学习算法,在语音和图像识别方面取得的效果,远远超过先前相关技术。深度学习(DL, Deep Learning)是机器学习(ML, Machine Learning)领域中一个新的研究方向,它被引入机器学习使其更接近于最初的目标——人工智能(AI, Artificial Intelligence)。......原创 2022-08-13 20:12:59 · 444 阅读 · 0 评论 -
2022年自然语言处理校招社招实习必备知识点盘点分享
本资源整理了自然语言处理领域中常见的一些知识点,并给出了答案,分享给大家。对于准备自然语言处理校招、社招、实习岗位的朋友,可以好好研读一下。原创 2022-08-07 19:30:30 · 183 阅读 · 0 评论 -
深度学习机器学习理论及应用实战-必备知识点整理分享
资源整理自网络,源地址https//github.com/ben1234560/AiLearning-Theory-Applying。本资源整理了深度学习及机器学习快速上手必备的数学基础知识及应用实战项目,包括基。含大量注释及数据集,力求每一位能看懂并复现。...原创 2022-07-30 22:53:35 · 337 阅读 · 0 评论 -
深度学习-NLP经典论文、课程、论文等资源整理分享
资源整理自网络,源地址https//github.com/theepiccode/Curated-Deep-Learning-Resources。原创 2022-07-23 13:24:44 · 349 阅读 · 0 评论 -
清华大学计算机学科推荐学术会议和期刊列表
本资源整理自清华大学计算机学科推荐学术会议和期刊列表,包含会议的级别、全称、截稿时间、结果时间、篇幅和官网地址等,分享给需要的朋友。深度学习与NLP的书店,,,BAT|TMD微软校|社招算法产品运营笔试真题题库小程序。点击文末原文连接,获取各大会议链接地址。计算机科学相关的领域非常多,等,涉及的相关国际会议也非常的多。...原创 2022-07-23 13:17:48 · 1476 阅读 · 0 评论 -
2022全网最火免费中文版-《深度学习在图像处理中的应用教程》免费分享
资源整理自网络,下载及获取见源地址https//github.com/WZMIAOMIAO/deep-learning-for-image-processing。本教程是对本人研究生期间的研究内容进行整理总结,总结的同时也希望能够帮助更多的小伙伴。后期如果有学习到新的知识也会与大家一起分享。...原创 2022-07-16 20:14:45 · 598 阅读 · 0 评论 -
算法初学者&互联网求职者必备《 剑指 Offer 31天图文题解》免费分享
LeetBook《图解算法数据结构》面向算法初学者、互联网求职者设计,主要内容包括:📗 剑指 Offer 图文题解 图文详解 75 道题目,覆盖主要算法知识点,非常适合作为算法学习的 第一份题库 。 题库活跃于各大互联网公司招聘中,可使笔面试准备事半功倍。 致力于行文深入浅出、图文搭配,提供简洁的 Python3, Java, C++ 解题代码。 资源整理自网络,下载及获取见源地址:https://github.com/krahets/LeetCode-Book .原创 2022-07-09 17:10:09 · 350 阅读 · 0 评论 -
最新最全 千次Star的中文版-《人工智能顶会论文写作tips》整理分享
很多初学者同学在投稿的时候经常会出现一些共有的小错误,为了节省大家的时间和帮助大家能够尽快的定位一些小的问题。本项目总结了我们在自己投稿过程中的经验和一些身边老师同学的投稿经验,希望能对大家有所帮助,由于我们的水平有限,如有疏漏,还望谅解。谢谢大家。 本项目的特色: 写前必看:包含一些常见的错误,每个错误均配有例子,可以在动手写论文之前快速浏览。 终稿必查:包含一些例子,方便快速定位是否自己的论文有错误。 百家之言:整理了一些网络上公开的写作资源(并不完全,欢迎补充),方便大家系统学原创 2022-06-25 19:51:06 · 409 阅读 · 0 评论 -
写给当前及未来博士研究生一些建议整理分享
博士学位是一种既有价值又有挑战性的经历。如果你是即将入学的博士生,或者你只是考虑要读博,本资源整理了一些读博期间需要注意的提示和建议,需要自取。 资源整理自网络,下载及获取见源地址:https://github.com/pliang279/awesome-phd-advice#PhD-survival-guides目录内容截图往期精品内容推荐一文详解 baseline论文 复现实战(NLP)李宏毅最新-《深度学习/机器学习课程2021》课程视频及ppt免费分享生产环境中机器学习模型部署方法、原创 2022-06-25 19:42:30 · 297 阅读 · 0 评论