迷宫问题

/*这题是求期望,我们把每一个格子看成一个点,
那么对于每一个点,他到E的期望可以用递推公式来表示
对于E点,他的期望是0
对于那些S到不了的点,都设置成-1
然后列方程
比如,某个点k,可以到i1,i2,i3,i4这么四个点
那么f[k]=(f[i1]+1)/4+(f[i2]+1)/4+(f[i3]+1)/4+(f[i4]+1)/4
这样对于每一个点可以列出方程,最后有n*m个方程,然后高斯消元去。
复杂度O((n*m)^3)*/
#include <cstdio>
#include <string>
#include <cstring>
#include <ctime>
#include <cstdlib>
#include <map>
#include <queue>
#include <string>
#include <algorithm>
#include <math.h>
using namespace std;
typedef long long lld;
 
const int INF=1000000000;
 
const int MAX=1000;
const double EPS=1.0e-8;
bool vis[20][20];
char s[MAX][MAX];
const int dir[4][2]={{1,0},{0,1},{-1,0},{0,-1}};
bool ok(int x,int n){return x>=0&&x<n;}
queue< pair<int,int> >q;
bool BFS(int x,int y,int n,int m)
{
    bool flag=false;
    memset(vis,false,sizeof(vis));
    while(!q.empty())q.pop();
    vis[x][y]=true;
    q.push(make_pair(x,y));
    int tx,ty;
    while(!q.empty())
    {
        x=q.front().first;
        y=q.front().second;
        q.pop();
        for(int i=0;i<4;i++)
        {
            tx=x+dir[i][0];
            ty=y+dir[i][1];
            if(!ok(tx,n)||!ok(ty,m))continue;
            if(s[tx][ty]=='#')continue;
            if(vis[tx][ty])continue;
            vis[tx][ty]=true;
            q.push(make_pair(tx,ty));
            if(s[tx][ty]=='E')flag=true;
        }
    }
    return flag;
}
int dblcmp(double x)
{
    if(fabs(x)<EPS)return 0;
    return x<0?-1:1;
}
double mat[MAX][MAX];
 
int _find(int s,int n,int mainx)
{
    int i;
    for(i=s+1;i<n;i++)
    {
        if(dblcmp(mat[i][mainx])!=0)return i;
    }
    return -1;
}
void swap(int a,int b,int n,int s)
{
    int i=0;
    for(i=s;i<n;i++)
    {
        swap(mat[a][i],mat[b][i]);
    }
}
double ans[MAX];
 
int GAUSS(int n,int m)
{
    int i,j,k;
    int mainx=0;
    for(i=0;i<n&&mainx<m-1;i++,mainx++)
    {
        if(dblcmp(mat[i][mainx])==0)
        {
            j=_find(i,n,mainx);
            if(j==-1)
            {
                i--;
                continue;
            }
            else
            {
                swap(i,j,m,mainx);
            }
        }
        double tmp=1.0/mat[i][mainx];
        if(dblcmp(mat[i][mainx]-1)!=0)
        {
            for(j=i;j<m;j++)
            {
                mat[i][j]*=tmp;
            }
        }
        for(j=i+1;j<n;j++)
        {
            tmp=mat[j][mainx]/mat[i][mainx];
            for(k=i;k<m;k++)
            {
                mat[j][k]-=mat[i][k]*tmp;
            }
        }
    }
 
    //out(n,m);
    int zeroRow=0;
    //判断无解
    for(i=0;i<n;i++)
    {
        int sum=0;
        for(j=0;j<m-1;j++)
        {
            //sum+=mat[i][j];
            if(dblcmp(mat[i][j])!=0)
            {
                sum=1;
                break;
            }
        }
        if(sum==0&&dblcmp(mat[i][m-1])!=0)
        {
            return -1;
        }
        else if(sum==0)
        {
            zeroRow++;
        }
    }
    if(n-zeroRow!=m-1)return 0;
    n-=zeroRow;
    for(i=n-1;i>=0;i--)
    {
        double sum=0;
        for(j=i+1;j<m-1;j++)
        {
            sum+=mat[i][j]*ans[j];
        }
        mat[i][m-1]-=sum;
        ans[i]=mat[i][m-1];
    }
 
    return 1;
}
 
void build(int x,int y,int n,int m)
{
 
    int i,tx,ty;
    int ps=x*m+y;
    int pt;
    if(s[x][y]=='#'||!vis[x][y])
    {
        mat[ps][ps]=1;
        mat[ps][m*n]=-1;
        return ;
    }
    if(s[x][y]=='E')
    {
        mat[ps][ps]=1;
        mat[ps][n*m]=0;
        return ;
    }
    int cnt=0;
    for(i=0;i<4;i++)
    {
        tx=x+dir[i][0];
        ty=y+dir[i][1];
        if(!ok(tx,n)||!ok(ty,m))continue;
        if(s[tx][ty]=='#')continue;
        cnt++;
    }
    if(cnt==0)
    {
        mat[ps][ps]=1;
        mat[ps][m*n]=-1;
        return ;
    }
    mat[ps][ps]=1;
    mat[ps][n*m]=1;
    double rat=1.0/cnt;
    for(i=0;i<4;i++)
    {
        tx=x+dir[i][0];
        ty=y+dir[i][1];
        if(!ok(tx,n)||!ok(ty,m))continue;
        if(s[tx][ty]=='#')continue;
        pt=tx*m+ty;
        mat[ps][pt]=-rat;
    }
}
void out(int n,int m)
{
    return;
    int i,j;
    puts("start");
    for(i=0;i<n;i++)
    {
        for(j=0;j<m;j++)
        {
            printf("%.3f ",mat[i][j]);
        }
        puts("");
    }
    puts("end");
}
int main()
{   
    int n=4;
 
    int T,i,j,k;
    int m;
    int pos;
    while(scanf("%d%d",&n,&m)!=EOF)
    {
        for(i=0;i<n;i++)
        {
            scanf("%s",s[i]);
            for(j=0;j<m;j++)
            {
                if(s[i][j]=='S')
                {
                    pos=i*m+j;
                }
            }
        }
        if(!BFS(pos/m,pos%m,n,m))
        {
            puts("-1");
            continue;
        }
        int N=n*m;
        for(i=0;i<N;i++)
        {
            for(j=0;j<=N;j++)
            {
                mat[i][j]=0;
            }
            mat[i][i]=1;
        }
 
        for(i=0;i<n;i++)
        {
            for(j=0;j<m;j++)
            {
                build(i,j,n,m);
            }
        }
        out(N,N+1);
        if(GAUSS(N,N+1)!=1)
        {
            puts("-1");
            continue;
        }
        if(dblcmp(ans[pos]+1)==0)puts("-1");
        else printf("%.2f\n",ans[pos]);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值