为什么会数据倾斜?
由于Hive 在join的时候会将相同的key 在最后都汇聚到同一个Reduce 进行处理 , 所以当Join 操作中某个表中的一些Key 数量远远大于其他,则处理该Key的Reduce 将成为瓶颈 .
如 : select a.* , b.* from table_a a join table_b b on a.id =b.id ; 如果table_a中的id数量远多于table_a中的其他id ,则会数据倾斜;
解决方案:
可以通过以下的参数设置 让hive 自动的对skew key 进行处理:
1.hive.optimize.skewjoin=true (default :false)
该参数通过在Hive 对物理执行计划优化时 ,添加一个Map Join用于处理Skew Key .
目前该优化方案是不支持Outer Join的!
如果数据倾斜的Key 出现在Join的最后一张表时 , 是不会触发Skew Join 的优化!
如 : select a.* , b.* from table_a a join table_b b on a.id =b.id ; 如果倾斜key 在表b的时候是不会被优化成skew join的, 如果出现在表 a 则会;

本文探讨了Hive中数据倾斜的问题,特别是在Join操作时由于某些Key数量过多导致的处理瓶颈。介绍了启用`hive.optimize.skewjoin=true`参数来自动处理倾斜Key,以及设置`hive.skewjoin.key`和`hive.skewjoin.mapjoin.map.tasks`来定义倾斜Key阈值和Map Join的最大任务数,以优化Skew Join。但需要注意,该方法不适用于Outer Join,并且倾斜Key在Join的最后一张表时不会触发优化。
最低0.47元/天 解锁文章
4864

被折叠的 条评论
为什么被折叠?



