The code and data for this paper are available at https://github.com/HKUST-KnowComp/DMSCMC
Abstract
文档级别的多aspact情感分类对于顾客关系管理是一个重要的任务,在我们的论文中,我们将任务建模为机器理解问题, 其中伪 question-answer 对是由少数aspect相关的关键字和aspect评分构造的。提出了一种分层迭代注意模型, 通过文档和方面问题之间的频繁重复交互来构建 aspect-specific 表示。我们采用层次结构来表示单词级别和句子级别信息, 并使用the attention operations 或者the multiple hop mechanism 来处理aspect问题和文档。TripAdvisor 和 BeerAdvocate 数据集的实验结果表明, 我们的模型优于经典基准。
Introduction
仅仅预测文本情感通常是不够的,因为一个评论文本通常涉及产品和服务的不同方面,如下所示,并且用户比起aspect的评估更喜欢提供整体的评估,因此,文本级别的多aspect情感分类任务很有意义,即预测每个aspect的分数,而不是总体的分数。

- 一个直观的document-level multi-aspect sentiment classification 方法是多任务学习(Caruana, 1997 )。
- 而对于神经网络,我们能够简单的对于每个aspect当作一个分类任务,然后让不同的任务在顶层使用solftmax分类器来抽取task-specific 的表示,同时将输入和隐藏层相互共享提高预测结果相互(Collobert et al., 2011; Luong et al., 2016) 。
但是,这些方法忽略了aspect本身也具有语义信息。比如说,对于人类而言,如果让我们对一个文本进行aspect评估,我们首先会简单阅读这个文档,然后找到aspect-related的关键词,然后看关键词周围的评论,最后将所有有关的片段统计起来进行判定。
在本文中,我们提出了一个新型的当作机器理解问题

本文提出将文档级别的多方面情感分类建模为机器理解问题,利用分层迭代注意模型来构建特定于方面的表示。实验表明,这种方法在TripAdvisor和BeerAdvocate数据集上优于传统基准。
最低0.47元/天 解锁文章
1474

被折叠的 条评论
为什么被折叠?



