sigmoid和softmax是神经网络输出层使用的激活函数,分别用于两类判别和多类判别。
binary cross-entropy和categorical cross-entropy是相对应的损失函数。
对应的激活函数和损失函数相匹配,可以使得error propagation的时候,每个输出神经元的“误差”(损失函数对输入的导数)恰等于其输出与ground truth之差。
作者:王赟 Maigo
链接:https://www.zhihu.com/question/36307214/answer/66899792
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

2161

被折叠的 条评论
为什么被折叠?



