lsldd的专栏

技术的鞭笞中,我猥琐前进

caffe-windows快速配置和测试训练教程

下载资源和数据1、下载微软官方caffe-windows解压到F盘根目录。这个版本好处待会会说。点我进入Git下载 2、Cuda SDK。这里以Cuda7.5为例。解压到caffe-windows目录。点我进入官网下载 3、下载cuDNN。同样用7.5版本。点我进入官网下载。官网下载可能需要你...

2017-06-04 16:56:55

阅读数:1762

评论数:2

模拟退火算法解旅行商(TSP)问题

该帖子的代码主要转自[模拟退火算法]1 该文对模拟退火算法作了较好的分析,不过该文中举例的TSP的代码有一些问题,我对此作了修正,并在文中最后做出解释。 代码如下:#include <iostream> #include <string.h> #include <...

2015-12-18 17:04:19

阅读数:7185

评论数:4

用Python开始机器学习(10:聚类算法之K均值)

用Python开始机器学习(10:聚类算法之K均值)

2014-11-30 21:39:19

阅读数:20698

评论数:1

用Python开始机器学习(9:推荐算法之推荐矩阵)

每个人都会有这样的经历:当你在电商网站购物时,你会看到天猫给你弹出的“和你买了同样物品的人还买了XXX”的信息;当你在SNS社交网站闲逛时,也会看到弹出的“你可能认识XXX“的信息;你在微博添加关注人时,也会看到“你可能对XXX也感兴趣”;等等。所有这一切,都是背后的推荐算法运作的结果。最经典的关...

2014-11-30 00:52:21

阅读数:8164

评论数:1

用Python开始机器学习(8:SVM支持向量机)

SVM 支持向量机

2014-11-29 02:13:45

阅读数:43357

评论数:15

用Python开始机器学习(7:逻辑回归分类)

在本系列文章中提到过用Python开始机器学习(3:数据拟合与广义线性回归)中提到过回归算法。逻辑回归算法本质还是回归,只是其引入了逻辑函数来帮助其分类。实践发现,逻辑回归在文本分类领域表现的也很优秀。现在让我们来一探究竟。1、逻辑函数假设数据集有n个独立的特征,x1到xn为样本的n个特征。常规的...

2014-11-27 22:12:01

阅读数:48274

评论数:5

用Python开始机器学习(6:朴素贝叶斯分类器)

朴素贝叶斯 情感分类 python

2014-11-27 14:52:04

阅读数:52437

评论数:13

用Python开始机器学习(5:文本特征抽取与向量化)

文本特征抽取与向量化 TF-IDF 词频-反转文档频率

2014-11-26 22:09:23

阅读数:58609

评论数:6

用Python开始机器学习(4:KNN分类算法)

KNN分类算法(K-Nearest-Neighbors Classification)是

2014-11-23 17:24:12

阅读数:49161

评论数:16

用Python开始机器学习(3:数据拟合与广义线性回归)

机器学习中的预测问题通常分为2类:回归与分类。简单的说回归就是预测数值。

2014-11-19 01:55:17

阅读数:70750

评论数:8

用Python开始机器学习(2:决策树分类算法)

从这一章开始进入正式的算法学习。首先我们学习

2014-11-18 01:05:07

阅读数:70198

评论数:17

用Python开始机器学习(1:配置windows平台)

使用机器学习的开发工具很多,如Mat'la

2014-11-13 19:07:06

阅读数:13406

评论数:2

提示
确定要删除当前文章?
取消 删除