专业WP网站开发-Joyous
码龄7年
关注
提问 私信
  • 博客:403,919
    社区:717
    问答:10
    动态:44,793
    449,439
    总访问量
  • 392
    原创
  • 3,157
    排名
  • 9,670
    粉丝
  • 976
    铁粉
  • 学习成就

个人简介:After graduation, I started working in the graphic design industry and later switched to Java software development. I have worked in companies such as Huawei and Ping An, with experience in front-end/back-end development. I have also worked in Google SEO and Wordpress related development.

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2017-09-03
博客简介:

lssffy的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    7
    当前总分
    2,600
    当月
    435
个人成就
  • 获得6,121次点赞
  • 内容获得18次评论
  • 获得5,586次收藏
  • 代码片获得745次分享
创作历程
  • 290篇
    2024年
  • 72篇
    2023年
  • 12篇
    2022年
  • 4篇
    2021年
  • 15篇
    2020年
成就勋章
TA的专栏
  • Java
    194篇
  • 学习
    333篇
  • 数据库
    49篇
  • 话题
    27篇
  • 网络安全
    1篇
  • 架构
    25篇
  • Redis
    26篇
  • 鸿蒙
    3篇
  • 人工智能
    10篇
  • 分布式
    16篇
  • 大数据
    1篇
  • ES
    3篇
  • 前端
    2篇
  • vue
    1篇
  • 云计算
    15篇
  • 算法
    5篇
  • Nacos
    1篇
  • MQ
    4篇
  • Kafka
    2篇
  • 试题
    4篇
  • 系统
    11篇
  • Wordpress
    1篇
  • 环境
    8篇
  • 工具
    9篇
  • Go
    2篇
  • 微信小程序
    1篇
兴趣领域 设置
  • 大数据
    redis
  • 后端
    spring架构分布式spring cloud
  • 搜索
    搜索引擎elasticsearch
  • 云平台
    云计算azureaws
创作活动更多

HarmonyOS开发者社区有奖征文来啦!

用文字记录下您与HarmonyOS的故事。参与活动,还有机会赢奖,快来加入我们吧!

0人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

解释 AOP 模块

Spring AOP是 Spring 框架中非常强大的一个模块,通过面向切面编程的方式,开发者可以有效地管理横切关注点,提升代码的模块化和可维护性。它的主要应用场景包括日志记录、事务管理、安全控制和性能监控等。尽管 Spring AOP 存在一定的局限性,但它为开发者提供了一种简单而高效的方式来实现横切逻辑,帮助减少代码重复,增强代码的可维护性和扩展性。在企业级开发中,Spring AOP 的灵活性和易用性使其成为构建健壮、可维护系统的重要工具。
原创
发布博客 18 小时前 ·
544 阅读 ·
20 点赞 ·
0 评论 ·
18 收藏

解释 JDBC 抽象和 DAO 模块

是 Java 中最常用的数据库访问 API,它提供了一种与关系型数据库交互的标准方法。然而,原生 JDBC 的使用中存在许多缺点,例如需要手动处理数据库连接、SQL 语句和异常处理,这些操作容易导致代码冗长且难以维护。为了解决这些问题,Spring 提供了JDBC 抽象模块,以简化与数据库的交互。Spring JDBC 抽象和 DAO 模块是 Spring 数据访问层的核心组成部分,旨在简化数据库交互过程并提高代码的可维护性和可复用性。JDBC 抽象通过等工具,帮助开发者减少样板代码,专注于业务逻辑;
原创
发布博客 18 小时前 ·
286 阅读 ·
7 点赞 ·
0 评论 ·
16 收藏

解释对象/关系映射集成模块

ORM(对象/关系映射)是一种编程技术,它将面向对象编程的领域和关系型数据库管理系统中的数据模型联系起来。通常,面向对象的语言(如 Java)和关系型数据库的数据存储方式是不同的:前者使用类和对象,而后者使用表格。ORM 工具可以将 Java 类映射到数据库表,从而简化开发人员对数据库的操作,使得开发人员可以通过操作对象来实现数据的增删改查。
原创
发布博客 18 小时前 ·
400 阅读 ·
17 点赞 ·
0 评论 ·
14 收藏

IoC 的优点是什么?

IoC(控制反转)是一种设计模式,其核心思想是将对象的控制权从应用程序代码中反转到容器。也就是说,应用程序不再负责创建和管理依赖对象,而是由 IoC 容器根据配置自动创建、配置、管理和注入这些对象。在 Spring 框架中,IoC 通过依赖注入(Dependency Injection, DI)来实现。Spring 提供了一些容器(如和),用于管理 Bean 的生命周期和依赖关系,极大简化了应用程序的开发。控制反转(IoC)
原创
发布博客 前天 11:40 ·
521 阅读 ·
10 点赞 ·
0 评论 ·
9 收藏

什么是 Spring IoC 容器?

控制反转(Inversion of Control, IoC)是一种软件设计模式,指将控制对象创建及其依赖的责任从应用程序代码转移到框架或容器中,从而达到降低代码耦合度、提高灵活性和可扩展性的目的。在传统编程中,应用程序代码负责创建和管理其所需的依赖对象,而在 IoC 中,容器负责自动管理这些依赖。Spring IoC 容器是一个管理 Java 对象(Bean)及其依赖关系的框架组件。它通过读取配置元数据(XML、注解或 Java 配置类)来创建、配置和组装 Bean,最终将 Bean 交给应用程序使用。
原创
发布博客 前天 11:40 ·
658 阅读 ·
12 点赞 ·
0 评论 ·
9 收藏

AI 赋能电商的未来:购物推荐、会员分类与智能定价的创新实践

随着人工智能(AI)技术的不断发展,越来越多的电商平台开始尝试运用 AI 来提升销售效率和用户体验。从购物推荐到会员分类,再到商品的智能定价,AI 正在深刻地改变电子商务行业的运行方式。AI 的加持不仅让电商平台更加智能化,同时也推动了行业整体的数字化转型。本文将详细探讨如何运用 AI 技术来创新实现购物推荐、会员分类、商品定价等关键业务,全面提升电商平台的运营效率与用户体验。
原创
发布博客 2024.11.20 ·
707 阅读 ·
23 点赞 ·
0 评论 ·
15 收藏

那个差点让我失去工作的 Bug——一场漫长的追捕之旅

程序的世界里,bug 就像藏在暗处的小怪兽,时不时跳出来捣乱。每个开发者的职业生涯中,总会遇到那么一两个让人刻骨铭心的 bug,那种让你彻夜不眠、精神崩溃却又无能为力的经历,足以让任何人都永远铭记在心。这是关于我职业生涯中最棘手、最折磨人的一次 bug 追捕的故事。
原创
发布博客 2024.11.20 ·
981 阅读 ·
29 点赞 ·
0 评论 ·
6 收藏

什么是 Spring?

Spring是 Java 开发领域最重要的框架之一,提供了一整套解决企业级应用的开发问题的工具。通过 IoC 和 AOP,Spring 实现了模块之间的松耦合和横切关注点的分离,从而大大提高了代码的可维护性和可扩展性。此外,Spring 通过其众多子项目(如 Spring Boot、Spring Cloud 等)不断推动微服务、云原生等现代架构的发展,使得 Java 开发人员能够应对各种复杂的应用场景。Spring 框架的灵活性和强大功能使得它成为了开发企业级应用的首选工具之一。
原创
发布博客 2024.11.20 ·
721 阅读 ·
21 点赞 ·
0 评论 ·
19 收藏

过滤器和拦截器的区别:深入解析与应用

过滤器是一种用于处理客户端请求和服务器响应的组件,在 Java 中广泛用于基于 Servlet 的 Web 应用程序。过滤器提供了一种机制来检查和修改 HTTP 请求和响应,它可以对请求执行一些通用的逻辑,比如安全检查、日志记录、请求修改等。过滤器在 Servlet API 中由接口定义,应用于整个请求处理生命周期。请求预处理:在请求到达 Servlet 之前对请求进行修改或验证。响应后处理:在请求处理完成后对响应进行修改,比如添加响应头。共享资源管理。
原创
发布博客 2024.11.20 ·
1083 阅读 ·
16 点赞 ·
0 评论 ·
12 收藏

微服务:深入理解与应用

微服务架构是一种将大型应用程序拆分为若干小型、松散耦合的服务的架构模式。每个微服务通常围绕某个特定的业务功能或领域逻辑进行构建,具有独立的代码库、数据库、开发团队以及生命周期。微服务的目标是使系统更灵活、可扩展、更易于开发和维护,并且通过分布式的方式管理复杂度。微服务最初由一些科技巨头提出,例如 Netflix、Amazon 和 Spotify,这些企业在不断扩展和适应市场变化的过程中,逐渐发展出了这种架构风格。微服务的核心思想是将单体应用程序中相互依赖的模块解耦,使每个模块都能够作为独立的服务来运行。
原创
发布博客 2024.11.19 ·
1119 阅读 ·
28 点赞 ·
0 评论 ·
14 收藏

CompletableFuture:深入理解与应用

是 Java 8 引入的一种用于异步编程的类,它实现了Future接口,并增加了许多新特性,使得异步任务的管理和执行变得更为方便和灵活。与传统的Future相比,允许我们以更加直观的方式管理任务之间的依赖、回调和组合。是 Java 8 中提供的一个强大工具,它使得异步编程变得更加简单和高效。通过链式调用、组合、异常处理等特性,我们可以实现复杂的异步任务管理,从而构建高性能的应用。它特别适用于处理 I/O 密集型任务、多个 API 请求的并行处理以及涉及依赖关系的任务。虽然。
原创
发布博客 2024.11.19 ·
898 阅读 ·
27 点赞 ·
0 评论 ·
19 收藏

什么是防火墙的默认安全区域

在防火墙配置中,安全区域(Security Zones)是逻辑上划分的不同网络分区,每个分区可以包含不同的网络接口和规则。安全区域有助于防火墙应用不同的安全策略来控制数据包的流动。不同厂商的防火墙可能对区域有不同的名称,但基本概念类似。外部区域(Untrust/Outside Zone):通常表示防火墙外部的网络,也就是连接到互联网的部分。外部区域被认为是不信任的区域,需要严格的控制和访问限制。内部区域(Trust/Inside Zone):这是内部网络的区域,通常包含公司的局域网(LAN)。该区域被视为。
原创
发布博客 2024.11.19 ·
858 阅读 ·
25 点赞 ·
0 评论 ·
11 收藏

对接第三方接口要考虑什么?

对接第三方接口是现代软件开发中的常见需求,但其复杂性和风险也不可忽视。在集成第三方服务时,开发者需要综合考虑安全性、稳定性、性能优化、错误处理等多个方面,以确保系统的健壮性和用户体验。此外,重视接口的测试、合规性以及对 API 的抽象封装,可以帮助开发团队提高开发效率,并应对未来可能的变化。通过合理的设计和规划,我们可以在对接第三方接口的过程中,确保系统的高效、可靠和安全性,从而为用户提供更好的服务和体验。希望本文能帮助你在对接第三方接口时少走弯路,建立起稳健的集成策略。
原创
发布博客 2024.11.18 ·
551 阅读 ·
14 点赞 ·
0 评论 ·
20 收藏

多线程异步与消息队列(MQ):异步架构的对比与应用

多线程异步是一种通过创建多个线程来并发执行任务的方法。在多线程编程中,可以利用计算机的多个核心处理器来并行地处理不同任务,以加快执行效率和提升系统的响应速度。多线程:在多线程环境中,多个线程同时运行,可以在同一进程内并发执行不同任务。多线程编程通常用来处理 CPU 密集型任务,比如图像处理、大量计算等。异步:异步编程是一种非阻塞的编程模式,在执行耗时操作时,异步线程会将任务挂起,然后去执行其他任务,等到原始任务完成后再回来处理结果。这种方式适用于需要等待响应的操作,比如 I/O 操作、数据库访问等。
原创
发布博客 2024.11.18 ·
1358 阅读 ·
40 点赞 ·
0 评论 ·
13 收藏

什么情况下不建议创建索引?

索引是数据库中提升查询性能的关键工具,但并非在所有情况下创建索引都是合适的。在表数据量小、更新频繁、数据区分度低、列长度过长等情况下,创建索引可能会带来额外的开销,反而导致整体性能下降。因此,开发人员在设计数据库时,必须根据业务需求和数据特性合理使用索引。索引的合理使用可以大幅度提高查询性能,但索引的滥用可能适得其反。通过理解索引的优缺点、谨慎选择需要创建索引的列,并结合数据库查询分析工具来评估索引策略,开发人员可以在数据库性能优化方面取得最佳的效果。
原创
发布博客 2024.11.17 ·
718 阅读 ·
23 点赞 ·
0 评论 ·
30 收藏

Spring Bean 的生命周期全过程

在 Spring 框架中,Bean是由 Spring 容器管理的对象,通常是指那些用来表示业务逻辑、数据访问、配置等的 Java 类。Bean 的定义、创建、初始化和销毁由 Spring IoC 容器负责控制。因此,Bean 的生命周期从容器创建开始,到容器销毁结束。Spring Bean 的生命周期是由多个阶段组成的,从实例化到依赖注入,再到初始化、使用、最后销毁。在每个生命周期阶段中,Spring 提供了多种接口和注解供开发者使用,以便于对 Bean 的创建、管理、增强和销毁进行定制。
原创
发布博客 2024.11.17 ·
713 阅读 ·
24 点赞 ·
0 评论 ·
21 收藏

不可变对象:并发编程的“安全岛”

不可变对象是指在创建之后其状态就无法改变的对象。换句话说,对象一旦被实例化,其所有字段的值都不会发生变化,无法被修改。StringString是 Java 中的一个典型不可变类,其每次修改操作都会产生一个新的字符串对象。IntegerDouble等包装类:这些类在创建后其值也无法更改。所有字段为final:字段值不能更改。类为final:类不能被继承。没有修改器方法:只有取值的方法,没有能够修改字段的方法。
原创
发布博客 2024.11.16 ·
691 阅读 ·
15 点赞 ·
0 评论 ·
18 收藏

Redis 线程模型详解:理解 Redis 高效性能的关键

Redis 是由 Salvatore Sanfilippo 开发的一个基于内存的键值存储系统,具有极高的读写性能。Redis 最常为人所知的一个特点是其“单线程”模型。Redis 的大多数操作都是基于单个主线程执行的。它使用 I/O 多路复用技术处理大量客户端连接,使其能够以单线程的方式保持对多个客户端的响应,这也正是 Redis 高效而简单的原因之一。Redis 使用单线程的方式去处理命令执行,这让其实现了极高的性能。
原创
发布博客 2024.11.16 ·
746 阅读 ·
20 点赞 ·
0 评论 ·
25 收藏

代码:Python随机森林反演生物量数据处理问题

答:

你可以使用 Python 和几个地理空间处理库(如 rasterio 和 geopandas)来解决这个问题。以下是如何提取大 TIF 文件中特定经纬度点的波段数据的详细步骤。这个过程基本上可以总结为:从经纬度坐标读取波段数据,然后将它们与点合并为一张表。这里我将会给出一个基于 Python 的示例代码:

步骤概述

  1. 读取 TIF 文件和 Excel 表:读取包含波段数据的 TIF 文件和包含 90 个特定点的 Excel 表。
  2. 提取特定点的波段数据:使用 rasterio 从 TIF 文件中提取这些经纬度点的波段数据。
  3. 合并所有数据并保存:将提取的波段数据与原点坐标合并,并保存为你需要的格式。

准备工具

以下是你需要的库,建议使用 conda 或 pip 来安装:

  • rasterio:用于读取 TIF 栅格数据。
  • pandas:用于处理 Excel 表数据。
  • geopandas(可选):用于地理空间数据操作。

安装这些库可以执行:

pip install rasterio pandas geopandas openpyxl

示例代码

import rasterio
import pandas as pd
import numpy as np

# 1. 读取Excel中的点数据
# 假设excel文件中有 'latitude' 和 'longitude' 两列
input_points_file = 'points.xlsx'
points_df = pd.read_excel(input_points_file)

# 检查一下数据格式
print(points_df.head())

# 2. 打开TIF文件
input_tif_file = 'large_data.tif'
with rasterio.open(input_tif_file) as src:
    # 读取 TIF 文件的元数据信息
    band_count = src.count
    print(f"Number of Bands: {band_count}")

    # 创建一个 DataFrame 来存储提取的波段数据
    extracted_data = []

    # 3. 提取每个点的波段值
    for index, row in points_df.iterrows():
        lat, lon = row['latitude'], row['longitude']

        # 获取栅格图像中与经纬度匹配的行列索引 (row, col)
        row_col = src.index(lon, lat)
        
        # 提取该位置的所有波段数据
        bands_values = []
        for i in range(1, band_count + 1):
            try:
                band_value = src.read(i)[row_col[0], row_col[1]]
                bands_values.append(band_value)
            except IndexError:
                # 如果越界,则标记为无数据值或NaN
                bands_values.append(np.nan)
        
        # 添加该点的经纬度及波段数据
        extracted_data.append([lat, lon] + bands_values)

# 4. 将数据转为DataFrame
columns = ['latitude', 'longitude'] + [f'band_{i}' for i in range(1, band_count + 1)]
extracted_df = pd.DataFrame(extracted_data, columns=columns)

# 5. 保存为Excel或CSV文件
extracted_df.to_excel('extracted_band_data.xlsx', index=False)
print("数据提取完成并保存为 'extracted_band_data.xlsx'")

代码解释

  1. 读取 Excel 文件中的经纬度点:

    • 使用 pandas 来读取包含经纬度点的 Excel 文件,其中假定有 latitude 和 longitude 两列。你可以更改列名称以匹配你的数据。
  2. 打开 TIF 文件:

    • 使用 rasterio.open 打开栅格文件,并确定栅格文件包含多少个波段 (src.count)。
    • 栅格数据的每个波段相当于遥感影像中的一个通道,你可以提取出每个通道的数据。
  3. 提取波段值:

    • 对于每一个点,使用 src.index(lon, lat) 获取该经纬度在 TIF 文件中对应的行列位置。
    • 对于该行列位置,逐个读取所有波段的数据 (src.read(i))。
    • 如果经纬度在栅格文件边界之外,使用异常处理把该点的波段值标记为 NaN。
  4. 保存结果:

    • 将提取的经纬度及波段数据存储为 DataFrame,并保存为 Excel 文件或 CSV 文件。

注意事项

  1. 数据对齐和投影系统:

    • 你需要确保 TIF 文件和经纬度点的数据投影系统是一致的。如果不一致,需要转换为相同的投影。通常,地理栅格数据是以 EPSG:4326 (WGS84) 投影表示,但遥感数据可能会使用其他投影(如 UTM)。
    • 如果投影系统不同,你可以使用 rasterio 或 pyproj 库来进行投影转换。
  2. 处理无效数据:

    • 当从 TIFF 文件中读取波段数据时,如果某些点超出边界或者在栅格的无效区域,则会引发越界问题。上面的代码已经加入了异常处理来处理这种情况。
  3. 性能考虑:

    • 如果 TIF 文件非常大,建议你在操作时尽量减少内存占用,比如逐块读取数据或者对提取的点进行优化。
    • 如果数据量特别大,可以考虑通过分块读取来减少内存占用,避免整体内存溢出的问题。
  4. 并行化:

    • 如果你有很多点,处理起来可能需要一些时间。可以使用 multiprocessing 库来并行化处理多个点的读取操作,尤其是当点数增加时,这样可以显著加快处理速度。

通过上述方法,你可以较为高效地从一个大型 TIF 文件中提取特定经纬度位置的波段数据,并且将提取的结果保存为表格形式便于后续分析和处理。

回答问题 2024.11.15

如何用C#的chart画1000万个点不卡顿

答:

在C#中使用Chart控件(System.Windows.Forms.DataVisualization.Charting)绘制大量的数据点(如1000万个点)时,直接绘制可能会造成严重的性能问题,包括界面卡顿和响应延迟。这种情况需要采用一些优化技巧和技术来保证绘图性能。这些技术包括数据点的采样、数据简化、使用更高效的绘图控件等。以下是一些具体的方法和技巧来帮助你绘制1000万个点而不卡顿:

1. 数据简化 (Data Reduction)

绘制1000万个点对于大多数图表控件来说是非常高的负载。你可以使用数据简化的方法来减少图表中需要绘制的点,例如:

  • 均匀采样 (Downsampling): 对于时间序列数据,可以从整个数据集中均匀地选择一定数量的点,而不是绘制全部点。例如,每隔100个点取一个(选择10万点),这样仍然可以保持数据的整体趋势,而不会卡顿。
  • 聚合采样 (Data Aggregation): 将相邻的数据点聚合为一个单一的点。例如,对于每1000个点取其平均值或最大值、最小值,绘制一条平滑的曲线,这种方式可以让你保留趋势而减少总点数。

2. 使用 FastLine 绘图模式

C# Chart控件中有多种绘图类型,可以使用 FastLine 类型。这种类型不支持复杂的点样式和标签,但是绘图速度极快,非常适合大规模数据的快速绘制。

var chart = new Chart();
var chartArea = new ChartArea("ChartArea1");
chart.ChartAreas.Add(chartArea);

var series = new Series("Series1")
{
    ChartType = SeriesChartType.FastLine, // 使用FastLine以提高性能
    XValueType = ChartValueType.Double,
    YValueType = ChartValueType.Double,
};
chart.Series.Add(series);

// 添加数据点的方式
for (int i = 0; i < 10000000; i++)
{
    series.Points.AddXY(i, Math.Sin(i * 0.001)); // 示例数据
}

FastLine 是最适合绘制大量数据点的图表类型之一,因为它仅绘制线条而不绘制每个点的详细信息(例如点的形状、标签等),从而极大地提高了性能。

3. 绘图窗口 (Viewport) 滚动与缩放

当显示大量数据时,通常不会把所有点都直接显示在屏幕上,而是只显示一个视窗中的数据。可以让用户在界面上进行滚动和缩放查看数据的不同部分。

  • 分区显示: 使用滚动条或者缩放控件,只显示一部分数据。比如,在图表上只显示一部分范围,用户滚动时动态加载下一部分的数据。
  • 坐标轴的缩放控制: Chart控件支持缩放,利用 Axis.ScaleView 可以控制绘图窗口的显示区域。下面是一个实现的示例:
chart.ChartAreas[0].AxisX.ScaleView.Zoomable = true;
chart.ChartAreas[0].AxisY.ScaleView.Zoomable = true;

chart.MouseWheel += (s, e) =>
{
    try
    {
        if (e.Delta > 0)
        {
            chart.ChartAreas[0].AxisX.ScaleView.ZoomReset();
            chart.ChartAreas[0].AxisY.ScaleView.ZoomReset();
        }
        else if (e.Delta < 0)
        {
            double xMin = chart.ChartAreas[0].AxisX.ScaleView.ViewMinimum;
            double xMax = chart.ChartAreas[0].AxisX.ScaleView.ViewMaximum;
            double yMin = chart.ChartAreas[0].AxisY.ScaleView.ViewMinimum;
            double yMax = chart.ChartAreas[0].AxisY.ScaleView.ViewMaximum;

            chart.ChartAreas[0].AxisX.ScaleView.Zoom(xMin + 1, xMax - 1);
            chart.ChartAreas[0].AxisY.ScaleView.Zoom(yMin + 1, yMax - 1);
        }
    }
    catch { }
};

4. 分块加载 (Chunk Loading)

为了减少内存压力和界面卡顿,可以分块加载数据,即不一次性加载全部1000万个点,而是每次只加载当前可见窗口需要的那一部分数据。这样就能实现边滚动边加载数据的效果。

int chunkSize = 100000; // 每次加载的数量
for (int i = 0; i < chunkSize; i++)
{
    series.Points.AddXY(i, Math.Sin(i * 0.001));
}
// 在需要显示其他数据块的时候再加载其他数据块

5. 优化图表控件配置

  • 禁用阴影和标记:尽量避免在大量数据点上使用阴影、标记和复杂的样式。它们会极大地影响性能。
  • 减少点标记:仅在需要的时候才添加点标记 (series.MarkerStyle),大量数据点上添加标记会导致图表渲染速度大幅降低。
  • 减少重绘次数:在更新大量数据点时,最好先暂停绘图 (SuspendLayout()),再批量更新数据,然后再恢复绘图 (ResumeLayout()),避免每次添加数据点时进行重绘。

6. 替代绘图控件

C# 的 Chart 控件在处理如此大量的数据时有一定局限性,可以考虑使用性能更好的第三方绘图库,例如:

  • LiveCharts:相对性能较好,支持 WPF 和 WinForms,可以处理较大的数据集。
  • OxyPlot:一个轻量级且开源的图表库,适用于 WPF 和 Windows Forms,有良好的性能表现。
  • SciChart:专为大数据量的图表绘制而设计的商业图表库,支持大量数据的高效渲染。

例如,使用 OxyPlot 进行大规模数据绘制时,可以创建非常轻量化的折线图,并且支持缩放、平移和视窗的滚动,以提高整体性能。

总结

绘制1000万个点不卡顿的关键在于减少需要绘制的数据点数量和优化绘图过程:

  1. 数据简化与采样:减少显示的数据点数量,例如均匀采样或聚合点数据。
  2. FastLine 图表类型:使用 Chart 控件的 FastLine 提高性能。
  3. 视窗显示和分块加载:实现滚动和缩放机制来逐步显示大量数据。
  4. 第三方控件:如果内置的 Chart 控件不能满足性能需求,考虑使用性能更强的第三方绘图控件。

这些方法结合使用,可以帮助你在绘制大量数据时保持良好的性能和用户体验。

回答问题 2024.11.15
加载更多