
推荐算法
Smarticle
Happy and Tough
展开
-
Recsys2018 总结 (推荐系统最新技术、应用和方向)32篇论文解读
本文对10月2-7号在加拿大渥太华举办的Recsys的32篇论文做了整理和归纳,总结出了目前推荐系统最新技术应用和方向。并对每一篇文章做了粗略的讲解。我打算从以下四个方面来讲述这32篇论文。首先呢,我会概述一下大会论文反映的一些情况。然后分析一下这些论文中用到的技术、应用的场景以及数据集。再将这32篇论文分类并详细的讲述一下。最后对着32篇论文如何去解决推荐中的经典问题...原创 2018-11-01 22:02:28 · 12808 阅读 · 30 评论 -
论文笔记:Scientific Article Search System based on Discourse Facet Representation
这篇文章主要讲述如何实现一个智能的搜索论文系统。作者借鉴了下面的这个搜索系统的思想。原创 2019-03-15 22:17:11 · 290 阅读 · 0 评论 -
可解释性推荐:Why I like it Multi-task Learning for Recommendation and Explanation
本文前半部分讲解可解释性推荐的综述后半部分主要讲解一个可解释推荐算法:Why I like it Multi-task Learning for Recommendation and Explanation Recsys2018...原创 2019-03-16 12:36:21 · 1996 阅读 · 6 评论 -
推荐系统入门(Top-N recommendation)
推荐系统入门本文从Improving Top-N Recommendation with Heterogeneous Loss 这篇论文的角度讲解如何入门推荐系统。适合推荐系统初学者入门。这篇文章提出了一种 通过多个损失函数 结合来提升topN推荐的效率 的方法。发表在16年的IJCAI上,是来自天普大学的研究成果。目录我先介绍一下topN背景,再介绍一下与本文相关工作,最后推导出本文提出的创新方法原创 2018-04-21 10:31:51 · 19263 阅读 · 6 评论 -
2018.09推荐算法进展
实验室师兄分享的推荐系统论文总结原创 2018-09-14 11:42:48 · 482 阅读 · 0 评论