[Leetcode]_169 Majority Element

/**
 *  Index: 169
 *  Title: Majority Element
 *  Author: ltree98
 **/

题意

给定一个数组,求数组内出现最频繁的数字。

  • 最频繁的元素出现次数将大于一半数组长度

我的

思路

时间复杂度:O(nlogn)
空间复杂度:O(1)

std::sort会根据数据量改变算法,达到平均时间复杂度为 O(nlogn)

最重要一点在于,题目中注释,最频繁的元素出现次数会大于一半数组长度。

所以,在排序后,最频繁数字一定会在数组中间。

实现

class Solution {
public:
    int majorityElement(vector<int>& nums) {
        sort(nums.begin(), nums.end());
        return nums[int(nums.size()/2)];
    }
};

进阶

这个题虽然简单,但是八仙过海,各显神通,有很多有意思且很巧妙的方法。

随机

这个方法,很简单,就是随机一个index,然后遍历数组,看这个index的数在数组内出现次数,是否大于n/2;若错误,继续随机index;直到出现符合规则数字为止。

class Solution {
public:
    int majorityElement(vector<int>& nums) {
        int len = nums.size();
        srand(unsigned(time(NULL)));
        while (true) {
            int index = rand() % len;
            int aim = nums[index];
            int counts = 0; 
            for (int i = 0; i < len; i++)
                if (nums[i] == aim)
                    counts++; 
            if (counts > len / 2) 
                return aim;
        }
    }
};

分治

分而治之,递归找各部分最频繁的元素。

class Solution {
public:
    int majorityElement(vector<int>& nums) {
        return majority(nums, 0, nums.size() - 1);
    }
    
private:
    int majority(vector<int>& nums, int left, int right)    {
        if(left == right)
            return nums[left];
        
        int mid = left + (right - left) / 2;
        int leftMid = majority(nums, left, mid);
        int rightMid = majority(nums, mid + 1, right);
        
        if(leftMid == rightMid)
            return leftMid;
        
        int leftMidCount = count(nums.begin() + left, nums.begin() + right + 1, leftMid);
        int rightMidCount = count(nums.begin() + left, nums.begin() + right + 1, rightMid);
        
        if(leftMidCount > rightMidCount)
            return leftMid;
        else
            return rightMid;
    }
};

摩尔投票

大概原理就是,最频繁的元素是一队,其他元素是一队,两队互相出一个元素抵消,直到最后剩下的为胜者,由于最频繁元素大于n/2,所以最后剩下的就是最频繁的元素。

class Solution {
public:
    int majorityElement(vector<int>& nums) {
        int major, counts = 0, n = nums.size();
        for (int i = 0; i < n; i++) {
            if (!counts) {
                major = nums[i];
                counts = 1;
            }
            else counts += (nums[i] == major) ? 1 : -1;
        }
        return major;
    }
};

位操作

所有的数转成二进制形式,从低位向高位,遍历每个数字的相应位上的出现频率大于n/2的1的记录,再把二进制数转回十进制。

class Solution {
public:
    int majorityElement(vector<int>& nums) {
        int major = 0, n = nums.size();
        for (int i = 0, mask = 1; i < 32; i++, mask <<= 1) {
            int bitCounts = 0;
            for (int j = 0; j < n; j++) {
                if (nums[j] & mask) bitCounts++;
                if (bitCounts > n / 2) {
                    major |= mask;
                    break;
                }
            }
        } 
        return major;
    } 
};
发布了472 篇原创文章 · 获赞 387 · 访问量 78万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览