Kubernetes监控:部署Heapster、InfluxDB和Grafana

全栈工程师开发手册 (作者:栾鹏)
架构系列文章

Kubernetes 监控方案

可选的方案:

  • Heapster + InfluxDB + Grafana
  • Prometheus + Grafana
  • Cadvisor + InfluxDB + Grafana

本篇文章介绍的是Heapster + InfluxDB + Grafana,kubernetes集群(1.11.0)

Heapster、InfluxDB和Grafana介绍

开源软件cAdvisor(Container cAdvisor)是用于监控容器运行状态的利器之一(cAdvisor项目的主页为https://github.com/cAdvisor),它被用于多个与Docker相关的开源项目中。
在kubernetes系统中,cAdvisor已经被默认集成到了kubelet组件内,当kubelet服务启动时,它会自动启动cAdvisor服务,然后cAdvisor会实时采集所在节点的性能指标及节点上运行的容器的性能指标。kubelet的启动参数–cadvisor-port可自定义cAdvisor对外提供服务的端口号,默认是4194。
cAdvisor提供了web页面可供浏览器访问,例如本kubernetes集群中的一个Node的ip是172.16.7.151,那么浏览器输入http://172.16.7.151:4194可以访问cAdvisor的监控页面。cAdvisor主页显示了主机的实时运行状态,包括CPU使用情况、内存使用情况、网络吞吐量及文件系统使用情况等信息。
但是cAdvisor只提供了单机的容器资源占用情况,而在大规模容器集群中,需要对所有的Node和全部容器进行性能监控。这就需要一套工具来实现集群性能数据的采集、存储和展示:Heapster、InfluxDB和Grafana。
Heapster提供了整个集群的资源监控,并支持持久化数据存储到InfluxDB、Google Cloud Monitoring或者其他的存储后端。Heapster从kubelet提供的API采集节点和容器的资源占用。另外,Heapster的 /metrics API提供了Prometheus格式的数据。
InfluxDB是一个开源分布式时序、事件和指标数据库;而Grafana则是InfluxDB的 dashboard,提供了强大的图表展示功能。它们常被组合使用展示图表化的监控数据。
Heapster、InfluxDB和Grafana均以Pod的形式启动和运行,其中Heapster需要与Kubernetes Master进行安全连接。

安装配置Heapster、InfluxDB和Grafana

下面需要的部署文件已经上传到github,地址https://github.com/626626cdllp/k8s

heapster release 页面下载heapster。

部署文件在heapster-1.6.0-beta.1/deploy/kube-config/influxdb/目录下

不过要先创建一个角色绑定

yaml文件在heapster-1.6.0-beta.1/deploy/kube-config/rbac/目录下面

kubectl create -f heapster-1.6.0-beta.1/deploy/kube-config/rbac/heapster-rbac.yaml

修改 heapster-1.6.0-beta.1/deploy/kube-config/influxdb/grafana.yaml

将镜像地址改成registry.cn-hangzhou.aliyuncs.com/google_containers/heapster-grafana-amd64:v5.0.4
将value的值改成/api/v1/namespaces/kube-system/services/monitoring-grafana/proxy

【说明】:

修改 heapster-1.6.0-beta.1/deploy/kube-config/influxdb/heapster.yaml

将image地址改为:registry.cn-hangzhou.aliyuncs.com/google-containers/heapster-amd64:v1.5.1

【说明】:Heapster需要设置的启动参数如下:

其他参数可以通过进入heapster容器执行 # heapster –help 命令查看和设置。

【注意】:URL中的主机名地址使用的是InfluxDB的Service名字,这需要DNS服务正常工作,如果没有配置DNS服务,则也可以使用Service的ClusterIP地址。
另外,InfluxDB服务的名称没有加上命名空间,是因为Heapster服务与InfluxDB服务属于相同的命名空间kube-system。也可以使用上命名空间的全服务名,例如:http://monitoring-influxdb.kube-system:8086

修改 heapster-1.6.0-beta.1/deploy/kube-config/influxdb/influxdb.yaml

镜像地址改成registry.cn-hangzhou.aliyuncs.com/google-containers/heapster-influxdb-amd64:v1.1.1

influxdb 官方建议使用命令行或 HTTP API 接口来查询数据库,从 v1.1.0 版本开始默认关闭 admin UI,将在后续版本中移除 admin UI 插件。
开启镜像中 admin UI的办法如下:先导出镜像中的 influxdb 配置文件,开启 admin 插件后,再将配置文件内容写入 ConfigMap,最后挂载到镜像中,达到覆盖原始配置的目的。
【注意】:manifests 目录已经提供了 修改后的 ConfigMap 定义文件

# 导出镜像中的 influxdb 配置文件
[root@node1 influxdb]# docker run --rm --entrypoint 'cat'  -ti lvanneo/heapster-influxdb-amd64:v1.1.1 /etc/config.toml >config.toml.orig
[root@node1 influxdb]# cp config.toml.orig config.toml 
# 修改配置:启用 admin 接口
[root@node1 influxdb]# vim config.toml
[admin]
  enabled = true
# 将修改后的配置写入到 ConfigMap 对象中(kubectl 可以通过 --namespace 或者 -n 选项指定namespace。如果不指定, 默认为default)
[root@node1 influxdb]# kubectl create configmap influxdb-config --from-file=config.toml -n kube-system
configmap "influxdb-config" created
# 将 ConfigMap 中的配置文件挂载到 Pod 中,达到覆盖原始配置的目的

修改 influxdb.yaml

将service的网络类型type改成NodePort这样可以调试访问

【说明】:

  • 定义端口类型为 NodePort,将InfluxDB暴露在宿主机Node的端口上,以便后续浏览器访问 influxdb 的 admin UI 界面。

执行所有定义文件进行安装

kubectl create -f grafana.yaml
kubectl create -f heapster.yaml
kubectl create -f influxdb.yaml

检查执行结果

1.检查 Deployment

# kubectl get deployments -n kube-system | grep -E 'heapster|monitoring'
heapster               1         1         1            1           12m
monitoring-grafana     1         1         1            1           12m
monitoring-influxdb    1         1         1            1           12m

2.检查 Pods

# kubectl get pods -n kube-system | grep -E 'heapster|monitoring'
heapster-2291216627-6hv9s               1/1       Running   0          10m
monitoring-grafana-2490289118-n54fk     1/1       Running   0          10m
monitoring-influxdb-1450237832-029q8    1/1       Running   0          10m

3.检查 kubernets dashboard 界面,看是显示各 Nodes、Pods 的 CPU、内存、负载等利用率曲线图
这里写图片描述

访问 grafana

1.通过 kube-apiserver 访问
获取 monitoring-grafana 服务 URL:

[root@node1 influxdb]# kubectl cluster-info
Kubernetes master is running at https://172.16.7.151:6443
Heapster is running at https://172.16.7.151:6443/api/v1/proxy/namespaces/kube-system/services/heapster
KubeDNS is running at https://172.16.7.151:6443/api/v1/proxy/namespaces/kube-system/services/kube-dns
kubernetes-dashboard is running at https://172.16.7.151:6443/api/v1/proxy/namespaces/kube-system/services/kubernetes-dashboard
monitoring-grafana is running at https://172.16.7.151:6443/api/v1/proxy/namespaces/kube-system/services/monitoring-grafana
monitoring-influxdb is running at https://172.16.7.151:6443/api/v1/proxy/namespaces/kube-system/services/monitoring-influxdb

To further debug and diagnose cluster problems, use 'kubectl cluster-info dump'.

浏览器访问 URL: http://139.159.206.232:17667/api/v1/proxy/namespaces/kube-system/services/monitoring-grafana
这里写图片描述

2.通过 kubectl proxy 访问

创建代理:

# kubectl proxy --address='172.16.7.151' --port=8086 --accept-hosts='^*$'

浏览器访问 URL:http://172.16.7.151:8086/api/v1/proxy/namespaces/kube-system/services/monitoring-grafana
这里写图片描述

3.Grafana页面查看和操作
浏览器访问 URL: http://172.16.7.151:8080/api/v1/proxy/namespaces/kube-system/services/monitoring-grafana
点击“Home”下拉列表,选择cluster,如下图。图中显示了Cluster集群的整体信息,以折线图的形式展示了集群范围内各Node的CPU使用率、内存使用情况等信息。
这里写图片描述

点击“Home”下拉列表,选择Pods,如下图。图中展示了Pod的信息,以折线图的形式展示了集群范围内各Pod的CPU使用率、内存使用情况、网络流量、文件系统使用情况等信息。
这里写图片描述

访问 influxdb admin UI

获取 influxdb http 8086 映射的 NodePort:

[root@node1 influxdb]# kubectl get svc -n kube-system|grep influxdb
monitoring-influxdb    10.254.66.133    <nodes>       8086:32570/TCP,8083:31601/TCP   17m

通过 kube-apiserver 的非安全端口访问 influxdb 的 admin UI 界面:http://172.16.7.151:8080/api/v1/proxy/namespaces/kube-system/services/monitoring-influxdb:8083/
这里写图片描述

heapster采集的metric

metric名称 说明
cpu/limit CPU hard limit,单位为毫秒
cpu/usage 全部Core的CPU累计使用时间
cpu/usage_rate 全部Core的CPU累计使用率,单位为毫秒
filesystem/limit 文件系统总空间限制,单位为字节
filesystem/usage 文件系统已用的空间,单位为字节
memory/limit Memory hard limit,单位为字节
memory/major_page_faults major page faults数量
memory/major_page_faults_rate 每秒的major page faults数量
memory/node_allocatable Node可分配的内存容量
memory/node_capacity Node的内存容量
memory/node_reservation Node保留的内存share
memory/node_utilization Node的内存使用值
memory/page_faults page faults数量
memory/page_faults_rate 每秒的page faults数量
memory/request Memory request,单位为字节
memory/usage 总内存使用量
memory/working_set 总的Working set usage,Working set是指不会被kernel移除的内存
network/rx 累计接收的网络流量字节数
network/rx_errors 累计接收的网络流量错误数
network/rx_errors_rate 每秒接收的网络流量错误数
network/rx_rate 每秒接收的网络流量字节数
network/tx 累计发送的网络流量字节数
network/tx_errors 累计发送的网络流量错误数
network/tx_errors_rate 每秒发送的网络流量错误数
network/tx_rate 每秒发送的网络流量字节数
uptime 容器启动总时长

每个metric可以看作一张数据库表,表中每条记录由一组label组成,可以看成字段。如下表所示:

Label名称 说明
pod_id 系统生成的Pod唯一名称
pod_name 用户指定的Pod名称
pod_namespace Pod所属的namespace
container_base_image 容器的镜像名称
container_name 用户指定的容器名称
host_id 用户指定的Node主机名
hostname 容器运行所在主机名
labels 逗号分隔的Label列表
namespace_id Pod所属的namespace的UID
resource_id 资源ID

可以使用SQL SELECT语句对每个metric进行查询,例如查询CPU的使用时间:

select * from "cpu/usage" limit 10

结果如下图所示:
这里写图片描述

参考:http://www.mamicode.com/info-detail-2100634.html

没有更多推荐了,返回首页