本专栏主要是介绍QMT的基础用法,常见函数,写策略的方法,也会分享一些量化交易的思路,大概会写100篇左右。
QMT的相关资料较少,在使用过程中不断的摸索,遇到了一些问题,记录下来和大家一起沟通,共同进步。
文章目录
相关阅读
小白也能做量化:零门槛QMT、Ptrade免费送
量化交易入门:如何在QMT中配置Python环境,安装第三方依赖包
年化收益达到了70%,增加了动态仓位权重调整后的全球核心资产轮动策略(含python代码解析)
之前,但是三个因子存在天然的量纲差异,趋势得分数值范围差异也很大,经过归一化的三因子模型,相比原始数值模型,夏普比率提升0.47,最大年化收益提高21%,历史回测收益率达到61.3%。