[TLS]的博客

个人学习过程中的一些心得与体会。我会尽可能地用易懂、清晰的语言去表达。...

理解全概率公式与贝叶斯公式

在概率论与数理统计中,有两个相当重要的公式——全概率公式与贝叶斯公式。然而很多人对这两个公式感到非常迷茫。一来不知道公式背后的意义所在,二来不知道这些冰冷的公式能有什么现实应用。

1. 全概率公式

在讲全概率公式之前,首先要理解什么是“完备事件群”。
我们将满足

BiBj=(ij)B1+B2+=Ω

这样的一组事件称为一个“完备事件群”。简而言之,就是事件之间两两互斥,所有事件的并集是整个样本空间(必然事件)。

假设我们要研究事件A。我们希望能够求出P(A),但是经过一番探索,却发现P(A)本身很难直接求出,不过却能够比较容易地求出各个P(Bi),以及相应的条件概率P(A|Bi)
能不能根据这些信息,间接地求出P(A)呢?
这当然是可以的。

我们不要忘记,Bi两两互斥的。

A=AΩ=AB1+AB2+AB3+

显然,AB1AB2AB3也是两两互斥的。1
一说到两两互斥,我们就想到了概率的加法定理2

(136)P(A)=P(AΩ)(137)=P(AB1+AB2+AB3+)(138)=P(AB1)+P(AB2)+P(AB3)+

再根据条件概率的定义,我们得到了教科书上的全概率公式:

P(A)=P(B1)P(A|B1)+P(B2)P(A|B2)+P(B3)P(A|B3)+

这样费了一番周折,我们总算得到了所求的P(A)。可以发现,虽然P(A)本身不好求,但我们可以根据它散落的“碎片”间接地将其求出。但不是所有情况都是能这样求出的——我们必须保证B1B2B3是一个完备事件群。这个其实也很好理解,假如你想将一个碎掉的花瓶重新还原,碎片如果不全,或者碎片之间出现了多余的“重叠”,还原工作都将以失败告终。

全概率公式可以从另一个角度去理解,把Bi看作是事件A发生的一种“可能途径”,若采用了不同的途径,A发生的概率,也就是相应的条件概率P(A|Bi)也会不同。但是,我们事先却并不知道将会走哪条途径,换言之,途径的选择是随机的3,这样就导致了不同途径被选中的可能性也许也会存在差异,这就是P(Bi)所表达的含义。这样一来,我们最终所要求的P(A),实际上就是一个不同路径概率的加权平均
下面我们来举一个例子。
某地盗窃风气盛行,且偷窃者屡教不改。我们根据过往的案件记录,推断A今晚作案的概率是0.8,B今晚作案的概率是0.1,C今晚作案的概率是0.5。作案者只可能是A、B、C中的一人,且这三人关系不好,不会联手作案4。除此之外,还推断出A的得手率是0.1,B的得手率是1.0,C的得手率是0.5。那么,今晚村里有东西被偷的概率是多少?
通过阅读上述文字,我们大概对A、B、C三人有了一个初步的印象。首先,A的脑子可能有些问题,特别喜欢偷,但是技术相当烂。B看来是个江湖高手,一般不出手,一出手就绝不失手。C大概是追求中庸,各方面都很普通。
我们将文字描述转换为数学语言,根据作案频率可知

P(A)=0.8,P(B)=0.1,P(C)=0.5

将“村里有东西被偷”记为S,根据得手率可以得到

P(S|A)=0.1,P(S|B)=1.0,P(S|C)=0.5

很简单,所求得的就是

P(S)=P(A)P(S|A)+P(B)P(S|B)+P(C)P(S|C)=0.43

祝这个村晚上好运吧。

2. 贝叶斯公式

有了前面的基础,我们现在先直接抛出贝叶斯公式:

P(Bi|A)=P(ABi)P(A)=P(Bi)P(A|Bi)jP(Bj)P(A|Bj)

这个公式本身平平无奇,无非就是条件概率的定义加上全概率公式一起作出的一个推导而已。但它所表达的意义却非常深刻。
在全概率公式中,如果将A看成是“结果”,Bi看成是导致结果发生的诸多“原因”之一,那么全概率公式就是一个“原因推结果”的过程。但贝叶斯公式却恰恰相反。贝叶斯公式中,我们是知道结果A已经发生了,所要做的是反过来研究造成结果发生的原因,是XX原因造成的可能性有多大,即“结果推原因”。

举个例子:
假设某种病菌在人口中的带菌率为0.03,由于技术落后等等原因,使得带菌者有时也未被检出阳性反应(假阴性),不带菌者也可能会被检出阳性反应(假阳性)。有如下数据:

P(|)=0.99,P(|)=0.01,P(|)=0.05,P(|)=0.95

假如一个人被检出阳性,那么这个人带菌的概率是多少?

如果不用概率的思维,光凭感觉去想这个问题……误检率那么低,那这个带菌的可能性大概会很高吧?
我们用贝叶斯公式去实际计算一下。

(121)P(|)=P()P(|)P()P(|)+P()P(|)(122)=0.03×0.990.03×0.99+0.97×0.05(123)=0.38

结果竟然连40%都没到。
问题出在哪里?我们没有注意到,带菌率低到只有0.03,甚至比误检率还要低。也就是说,在一大批人里可以检查出一堆阳性的,而这堆阳性的人里面真正带菌的,也只是一小部分而已。

贝叶斯公式与机器学习

在机器学习中,我们经常遇到的一个问题就是分类。
我们看看维基百科上的“性别分类”问题(维基百科-朴素贝叶斯分类器)。
我们想要实现的是,通过知道一个人的身高、体重以及脚的尺寸,去判断这个人是男是女。
为了能够判断,我们当然需要一些参考数据,或者说,训练数据:

性别 身高(英尺) 体重(磅) 脚的尺寸(英寸)
6 180 12
5.92 190 11
5.58 170 12
5.92 165 10
5 100 6
5.5 150 8
5.42 130 7
5.75 150 9

问题来了:
现有一身高6英尺,体重130磅,脚尺寸为8英寸的人,这个人是男是女呢?

这个表格看起来不够直观,我们先做一点微小的数据可视化工作:

#!/usr/bin/python3

from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt

fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')

# 身高、体重、脚尺寸数据
x = [6, 5.92, 5.58, 5.92, 5, 5.5, 5.42, 5.75]
y = [180, 190, 170, 165, 100, 150, 130, 150]
z = [12, 11, 12, 10, 6, 8, 7, 9]

# 男性用红色园圈表示
ax.scatter(x[:4], y[:4], z[:4], c='r', marker='o', s=100)
# 女性用蓝色三角表示
ax.scatter(x[4:], y[4:], z[4:], c='b', marker='^', s=100)

ax.set_xlabel('Height (feet)')
ax.set_ylabel('Weight (lbs)')
ax.set_zlabel('Foot size (inches)')

# 显示散点图
plt.show()

旋转的散点图
尽管只有8组数据,但我们在图中也大概看了出来,似乎男女的数据点都有种“聚成一团”的感觉,这似乎是一种启示。

但是这个和贝叶斯能有什么关系呢?
我们先对前面的贝叶斯公式做一些“扩展”:
我们记F1F2F3分别为身高、体重、脚尺寸的随机变量,取值当然是各自坐标轴上的值。再记C为分类结果的随机变量,取值为“男”或“女”。
不要忘了我们要解决的问题是什么。我们所要解决的问题的本质,就是在已知F1F2F3的时候,判断p(|F1,F2,F3)p(|F1,F2,F3)究竟哪个更加大,换言之,这个人是更像男还是更像女,写成数学语言就是:

c^=argmaxcp(C|F1,F2,F3)

根据贝叶斯公式,得

p(C|F1,F2,F3)=p(F1,F2,F3|C)P(C)p(F1,F2,F3)

我们的任务只是比较大小,而上式右边的分母是一个常数,不妨将其忽略掉以简化计算。这时候我们的问题就剩下如何求p(F1,F2,F3|C)P(C)了。
我们认定F1F2F3是彼此独立的特征5,那么有

p(F1,F2,F3|C)=p(F1|C)p(F2|C)p(F3|C)

于是我们的问题就化简为了

c^=argmaxcp(F1|C)p(F2|C)p(F3|C)P(C)

这样就够了么?当然没有。我们还有一个严重的问题没有解决——连续随机变量。我们不能想离散随机变量那样计算p(Fi|C)
然而我们可以假设,身高、体重、脚尺寸都是正态分布
我们分析一下样本数据的数字特征:

性别 均值(身高) 方差(身高) 均值(体重) 方差(体重) 均值(脚的尺寸) 方差(脚的尺寸)
男性 5.855 3.5033e-02 176.25 1.2292e+02 11.25 9.1667e-01
女性 5.4175 9.7225e-02 132.5 5.5833e+02 7.5 1.6667e+00

得到了均值与方差,也就得到了正态分布的μσ2参数。
如此,p(F1|C)p(F2|C)p(F3|C)就能顺利求出了。
比如,

p(F1=6|)=12πσ2exp((6μ)22σ2)1.5789

值得注意的是,这里求的是连续随机变量的概率密度,所以求出比1大的值也是正常的6
剩下的P(C)可以用样本中男女的出现频率来估计,估算出都是0.5。

综上,我们计算可得:

p(F1=6|)p(F2=130|)p(F3=8|)P()=6.1984×109p(F1=6|)p(F2=130|)p(F3=8|)P()=5.3778×104

从计算结果可以看出,这个人是女性的可能性远大于是男性的可能性。

如果要通过编程实现这一过程,还要考虑平滑处理,这里不再赘述。


  1. 如果没有想明白这一步,可以利用Venn图来帮助理解。
  2. 若干个两两互斥的事件之和的概率,等于各事件的概率之和,即
    P(A1+A2+)=P(A1)+P(A2)+
  3. 随机事件的意思就是,在试验之前你并不知道该事件是否会在试验中发生,发生与否取决于机遇。
  4. 感谢网友在评论中指出的批评,这个地方我是写漏了条件。
  5. 假设不同特征彼此独立,即,当有
    P(y|x1,,xn)=P(y)P(x1,,xn|y)P(x1,,xn)

    我们假设
    P(xi|y,x1,,xi1,xi+1,,xn)=P(xi|y)

    所以才称作“朴素”贝叶斯(Naive Bayes)。
  6. 概率密度可以理解为“瞬时”的概率。对于概率密度函数,必须要满足两条性质:
    (1)f(x)0;(2)f(x)dx=1

    所以只要f(x)整体的积分为1就可以了,并不要求局部的每个值都比1小。就像δ函数(维基百科-delta函数),虽然在0上的函数值可以大于1,但整体的积分却永远是1。
阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/luc9910/article/details/54377626
个人分类: 基础学科
想对作者说点什么? 我来说一句

全概率公式及其含义

直接看:

stpeace stpeace

2018-01-20 12:38:11

阅读数:1828

没有更多推荐了,返回首页

不良信息举报

理解全概率公式与贝叶斯公式

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭