归一化的具体作用是归纳统一样本的统计分布性。归一化在0-1之间是统计的概率分布,归一化在-1--+1之间是统计的坐标分布。归一化有同一、统一和合一的意思。无论是为了建模还是为了计算,首先基本度量单位要同一,神经网络是以样本在事件中的统计分别几率来进行训练(概率计算)和预测的,且sigmoid函数的取值是0到1之间的,网络最后一个节点的输出也是如此,所以经常要对样本的输出归一化处理。归一化是统一在0-1之间的统计概率分布,当所有样本的输入信号都为正值时,与第一隐含层神经元相连的权值只能同时增加或减小,从而导致学习速度很慢。另外在数据中常存在奇异样本数据,奇异样本数据存在所引起的网络训练时间增加,并可能引起网络无法收敛。为了避免出现这种情况及后面数据处理的方便,加快网络学习速度,可以对输入信号进行归一化,使得所有样本的输入信号其均值接近于0或与其均方差相比很小。
在matlab里面,用于归一化的方法共有三种:
一、用matlab
归一化在数据处理中至关重要,Matlab提供了多种方法,包括线性、对数和反余切函数转换,以及premnmx、tramnmx、postmnmx和mapminmax等函数。这些方法帮助数据在特定范围内标准化,提高建模和计算效率,减少奇异样本的影响,加速神经网络学习。prestd、poststd和trastd则用于标准差归一化。
订阅专栏 解锁全文
4797

被折叠的 条评论
为什么被折叠?



