Problem 30: Surprisingly there are only three numbers that can be written as the sum of fourth powers of their digits:
1634 = 1^4 + 6^4 + 3^4 + 4^4
8208 = 8^4 + 2^4 + 0^4 + 8^4
9474 = 9^4 + 4^4 + 7^4 + 4^4
As 1 = 1^4 is not a sum it is not included.
The sum of these numbers is 1634 + 8208 + 9474 = 19316.
Find the sum of all the numbers that can be written as the sum of fifth powers of their digits.
Methods:
1. Write a function to judge whether a number can be writtern as sum of fifth powers of their digits.
2. Compute the possible range of the numbers. Assume the number have 7 digits, the maximum sum of fifth powers of 7 digits is 7 * (9^5) = 413343. It just has 6 digits. So the number cannot has more than 6 digits.
import math
def fifth(n):
sum = 0
n_str = str(n)
for i in n_str:
sum += pow(int(i), 5)
if sum == n:
print n
return True
else:
return False
def main():
count = 0
for i in range(2, 999999):
if fifth(i):
count += i
print "sum is ", str(count)
return
if __name__ == "__main__":
main()
本文探讨了能被表示为其各个数字五次幂之和的特殊整数,并通过编程方式寻找所有符合条件的整数,给出了完整的求和过程及代码实现。
188

被折叠的 条评论
为什么被折叠?



