向量空间

Vector Spaces

1.A

  1. 列表都是有长度的。不存在无限长度。

1.B

  1. F ∞ F^{\infty} F定义
    F ∞ = { ( x 1 , x 2 , ⋯   ) : x j ∈ F , ( j = 1 , 2 , ⋯   ) } F^{\infty}=\{(x_1,x_2,\cdots) :x_j\in F ,(j=1,2,\cdots)\} F={(x1,x2,):xjF,(j=1,2,)}

  2. F S F^S FS的定义

    • S S S是一个集合, 那么 F S F^S FS 是一个从 S S S映射到 F F F的所有函数的集合。

    • 如果 f , g ∈ F S f,g\in F^S f,gFS, 那么 f + g ∈ F S f+g\in F^S f+gFS 定义为
      ( f + g ) ( x ) = f ( x ) + g ( x ) (f+g)(x)=f(x)+g(x) (f+g)(x)=f(x)+g(x) 对于所有 x ∈ S x\in S xS

    • 如果 λ ∈ F \lambda\in F λF f ∈ F S f\in F^{S} fFS, 那么 λ f ∈ F S \lambda f \in F^S λfFS
      定义为 ( λ f ) ( x ) = λ f ( x ) (\lambda f)(x)=\lambda f(x) (λf)(x)=λf(x) 对于所有 x ∈ S x\in S xS

1.C

  1. 子空间的条件

    如果 U U U V V V 的一个子空间的充要条件如下

    • additive identity 0 ∈ U 0\in U 0U

    • closed under addition u , w ∈ U ⇒ u + w ∈ U u,w\in U \Rightarrow u+w\in U u,wUu+wU

    • closed under scalar multiplication
      a ∈ F , u ∈ U ⇒ a u ∈ U a\in F, u \in U \Rightarrow au \in U aF,uUauU

  2. 子空间和的定义

    U 1 + U 2 + ⋯ + U m = { u 1 + u 2 + ⋯ + u m : u 1 ∈ U 1 , ⋯   , u m ∈ U m } U_1+U_2+\cdots+U_m=\{u_1+u_2+\cdots+u_m:u_1\in U_1,\cdots,u_m\in U_m\} U1+U2++Um={u1+u2++um:u1U1,,umUm}

  3. 子空间的和是包含这些子空间的最小子空间。

    • 证明子空间的和 ( U 1 + U 2 + ⋯ + U m ) (U_1+U_2+\cdots+U_m) (U1+U2++Um)是一个向量空间

    • U 1 + U 2 + ⋯ + U m U_1+U_2+\cdots+U_m U1+U2++Um包含所有的 U 1 , U 2 , ⋯   , U m U_1,U_2,\cdots,U_m U1,U2,,Um

    • 任何一个包含 U 1 , U 2 , ⋯   , U m U_1,U_2,\cdots,U_m U1,U2,,Um的子空间都包含 U 1 + U 2 + ⋯ + U m U_1+U_2+\cdots+U_m U1+U2++Um

  4. 直和的定义 U 1 ⊕ U 2 ⊕ ⋯ ⊕ U m U_1\oplus U_2\oplus \cdots \oplus U_m U1U2Um
    U 1 + U 2 + ⋯ + U m U_1+U_2+\cdots+U_m U1+U2++Um
    中的每一个元素由唯一的 u 1 + u 2 + ⋯ + u m u_1+u_2+\cdots+u_m u1+u2++um确定,其中 u j ∈ U j u_j\in U_j ujUj

  5. U 1 + U 2 + ⋯ + U m U_1+U_2+\cdots+U_m U1+U2++Um
    是直和的充要条件是,当 u 1 + u 2 + ⋯ + u m = 0 u_1+u_2+\cdots+u_m=0 u1+u2++um=0 u j = 0 , j ∈ { 1 , 2 , ⋯   , m } u_j=0,j\in \{1,2,\cdots,m\} uj=0,j{1,2,,m}

    • 如果
      U 1 + U 2 + ⋯ + U m ≡ U 1 ⊕ U 2 ⊕ ⋯ ⊕ U m U_1+U_2+\cdots+U_m\equiv U_1\oplus U_2\oplus\cdots\oplus U_m U1+U2++UmU1U2Um,那么
      u 1 + u 2 + ⋯ + u m = 0 u_1+u_2+\cdots+u_m=0 u1+u2++um=0只有一种形式,也就是全部 u j = 0 , ( j = 1 , 2 , ⋯   , m ) u_j=0,(j=1,2,\cdots,m) uj=0,(j=1,2,,m).因为
      如果 u j ≠ 0 u_j\neq 0 uj̸=0,那么 0 0 0将会有第二种表示形式
      − u 1 + − u 2 + ⋯ + − u j + ⋯ − u m = 0 -u_1+-u_2+\cdots+-u_j+\cdots-u_m=0 u1+u2++uj+um=0

    • 如果 u 1 + u 2 + ⋯ + u m = 0 u_1+u_2+\cdots+u_m=0 u1+u2++um=0 那么 u j = 0 , j ∈ { 1 , 2 , ⋯   , m } u_j=0,j\in \{1,2,\cdots,m\} uj=0,j{1,2,,m}.
      但是如果 U 1 + U 2 + ⋯ + U m U_1+U_2+\cdots+U_m U1+U2++Um 仍然含有 v v v 具有两种表示形式
      v = u 1 + u 2 + ⋯ + u m , v = u 1 ′ + u 2 ′ + ⋯ + u m ′ v=u_1+u_2+\cdots+u_m, v=u_1^{'}+u_2^{'}+\cdots+u_m^{'} v=u1+u2++um,v=u1+u2++um

      那么, v − v = ( u 1 − u 1 ′ ) + ( u 2 − u 2 ′ ) + ⋯ + ( u m − u m ′ ) v-v=(u_1-u_1^{'})+(u_2-u_2^{'})+\cdots+(u_m-u_m^{'}) vv=(u1u1)+(u2u2)++(umum)
      u 1 = u 1 ′ , u 2 = u 2 ′ , ⋯   , u m = u m ′ u_1=u_1^{'}, u_2=u_2^{'},\cdots,u_m=u_m^{'} u1=u1,u2=u2,,um=um.
      也就是说 v v v只有一种表示形式。

  6. U + V U+V U+V 是直和的充要条件是 U ∩ V = { 0 } U\cap V=\{0\} UV={0}

    • 如果 U + V ≡ U ⊕ V U+V\equiv U\oplus V U+VUV,假如有 v ∈ U ∩ V v\in U\cap V vUV v ≠ 0 v\neq 0 v̸=0.
      也就是说 v + − v = 0 v+-v=0 v+v=0这是0的有一种表示形式( 0 + 0 = 0 0+0=0 0+0=0).
      从上一个定理可 知 U ⊕ V U\oplus V UV
      只有一种0( 0 + 0 = 0 0+0=0 0+0=0)的表示形式。所以假设不成立

    • 如果 U ∩ V = { 0 } U\cap V=\{0\} UV={0},假设 0 in U + V U+V U+V
      中0有两种表示形式,并且其中一个为 v + − v = 0 v+-v=0 v+v=0, 且 v ≠ 0 v\neq 0 v̸=0.
      那么就一定有 v ∈ U ∩ V v\in U\cap V vUV,那么我们的假设不成立

    • 注意,对于三个以及三个以上的集合是不成立的,比如当
      U 1 ∩ U 2 = U 2 ∩ U 3 = U 3 ∩ U 1 = { 0 } U_1\cap U_2=U_2\cap U_3=U_3\cap U_1=\{0\} U1U2=U2U3=U3U1={0}
      时,并不能得出 U 1 + U 2 + U 3 ≡ U 1 ⊕ U 2 ⊕ U 3 U_1+U_2+U_3\equiv U_1\oplus U_2\oplus U_3 U1+U2+U3U1U2U3

Exercises

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值