rs 解码的一点资料

.2 Decoder architecture

A general architecture for decoding Reed-Solomon codes is shown in the following diagram.

Key

 r(x) Received codeword Si Syndromes L(x) Error locator polynomial Xi Error locations Yi Error magnitudes c(x) Recovered code word v Number of errors

The received codeword r(x) is the original (transmitted) codeword c(x) plus errors:

r(x) = c(x) + e(x)

A Reed-Solomon decoder attempts to identify the position and magnitude of up to t errors (or 2t erasures) and to correct the errors or erasures.

Syndrome Calculation

This is a similar calculation to parity calculation. A Reed-Solomon codeword has 2t syndromes that depend only on errors (not on the transmitted code word). The syndromes can be calculated by substituting the 2t roots of the generator polynomial g(x) into r(x).

Finding the Symbol Error Locations

This involves solving simultaneous equations with t unknowns. Several fast algorithms are available to do this. These algorithms take advantage of the special matrix structure of Reed-Solomon codes and greatly reduce the computational effort required. In general two steps are involved:

Find an error locator polynomial

This can be done using the Berlekamp-Massey algorithm or Euclid’s algorithm. Euclid’s algorithm tends to be more widely used in practice because it is easier to implement: however, the Berlekamp-Massey algorithm tends to lead to more efficient hardware and software implementations.

Find the roots of this polynomial

This is done using the Chien search algorithm.

Finding the Symbol Error Values

Again, this involves solving simultaneous equations with t unknowns. A widely-used fast algorithm is the Forney algorithm.

RS编解码的C语言实现

2017年08月02日 9KB 下载

07-25 7066

08-04 3089

RS编解码源码，亲测可用

2018年07月11日 26KB 下载

11-25 6172

RS码编解码MATLAB程序

2009年09月24日 7KB 下载

09-02 1610

RS编解码的C实现

2014年07月25日 17KB 下载

张晓文WOLF 新版 CCIE RS全套图文学习笔记

2014年09月01日 15.53MB 下载

rs编码c语言实现

2014年09月12日 4KB 下载