- 博客(166)
- 收藏
- 关注
原创 MSCap: Multi-Style Image Captioning with Unpaired Stylized Text
MSCap: Multi-Style Image Captioning with Unpaired Stylized Text原文地址时间:2019 CVPR题外话,这篇文章思路写的非常清楚,读起来很舒服Intro当前的image captioning方法通常生成一些客观的描述,而没有关于语言学上的研究,如图,展示了不同风格的caption之前的相关工作也有将image captio...
2019-06-21 21:55:46
1628
2
原创 Self-critical n-step Training for Image Captioning
Self-critical n-step Training for Image Captioning原文地址时间:2019 CVPRIntroimage caption 传统训练方法有两个问题exposure bias,训练的时候使用ground truth词,测试的时候使用自己预测的词,不一致的预测方法,可能导致错误累积,称为exposure bias训练时以交叉熵为损失函数,测试...
2019-06-21 21:55:20
893
原创 Look Back and Predict Forward in Image Captioning
Look Back and Predict Forward in Image Captioning
2019-06-21 21:54:53
1380
原创 Intention Oriented Image Captions with Guiding Objects
Intention Oriented Image Captions with Guiding Objects原文地址时间:2019 CVPRIntroimage caption的过程缺少可控性,一张图片中可以包括很多个目标,但是一个描述只能包括其中一小部分尽管我们能找到并分类出所有目标,但是我们不能强制语言模型描述我们关心的目标本文提出了image captions with gui...
2019-06-21 21:54:34
905
1
原创 Adversarial Semantic Alignment for Improved Image Captions
Adversarial Semantic Alignment for Improved Image Captions原文地址时间:2019 CVPR,但在Arxiv上公开的时间为2018年6月IntroCIDEr、BLEU、SPICE等度量缺少了对图片和caption的语义对齐的度量,威力解决多样性和自然性的问题,image captioning模型最近在基于GANs的模型上进行探索,核心...
2019-06-21 21:54:18
1039
1
原创 Good News,Everyone! Context driven entity-aware captioning for news images
Good News,Everyone! Context driven entity-aware captioning for news images原文地址code时间:2019 CVPRIntro本文将image caption分为了三个等级,第一级是对场景中目标的枚举,第二级是基本的描述,第三级是解释,当前的image captioning系统仅仅可以做到描述那一级,而无法将任何先验...
2019-06-21 21:53:53
1300
2
原创 第四十五周学习笔记
第四十五周学习笔记论文阅读概述Context and Attribute Grounded Dense Captioning,本文通过将global,neighboring和local的图像特征融合,实现更加准确的dense caption,并引入coarse-to-fine损失函数,来辅助caption model选择更加准确的词Dense Relational Captioning:T...
2019-06-14 21:25:45
435
原创 《SuperPoint:Self-Supervised Interest Point Detection and Description》笔记
文章目录《SuperPoint: Self-Supervised Interest Point Detection and Description》笔记文章解决了什么问题用了什么方法效果如何结论存在什么不足Future Work细节过程构建合成数据集训练MagicPointMagicPoint + Homographic Adaption生成pseudo ground truth选择Homogra...
2019-06-14 17:49:25
6833
17
原创 Show, Control and Tell: A Framework for Generating Controllable and Grounded Captions
Show, Control and Tell: A Framework for Generating Controllable and Grounded Captions原文地址时间:2019 CVPRIntro当前的多数Image caption模型缺少可控性(controllability)和可解释性(explainablity),这使得它与人类智能不同,因为人类能够选择各种描述图片的...
2019-06-14 17:41:40
2514
6
原创 METEOR: An Automatic Metric for MT Evaluation with Improved Correlation with Human Judgments
METEOR: An Automatic Metric for MT Evaluation with Improved Correlation with Human Judgments原文地址时间:2005Intro对于机器翻译(Machine Translation,MT)的结果,相比人工度量,使用自动度量更块、简单、便捷,本文提出了自动度量METEOR,它解决了IBM的BLEU的缺点,...
2019-06-14 17:39:54
1387
原创 Self-critical Sequence Training for Image Captioning
Self-critical Sequence Training for Image Captioning原文地址时间:2017
2019-06-14 17:36:16
3443
原创 Dense Relational Captioning:Triple-Stream Networks for Relationship-Based Captioning
Dense Relational Captioning:Triple-Stream Networks for Relationship-Based Captioning原文地址时间:2019 CVPRIntro本文要解决的问题是dense caption,通过寻找每对object之间的关系来进行caption生成Approach给一张图片,RPN生成object proposals,然...
2019-06-14 17:34:48
1008
原创 Context and Attribute Grounded Dense Captioning
Context and Attribute Grounded Dense Captioning原文地址时间:2019 CVPRIntro本文要解决的是dense caption的问题,传统方法中,对于每个proposal 单独生成caption而不结合上下文,结果可能因为局部的模糊性而错误,或者就是融入全局的信息,但有时也会导致全局与局部信息的冲突,如图所示,局部上无法识别黄色的裤子(误认...
2019-06-14 17:32:25
760
原创 C++的范围for和python的迭代for
C++的范围for和python的forpython使用for对可迭代对象进行遍历的时候会对原对象进行拷贝,从而当你在循环过程中更改原对象是无法更改循环的行为的,但最后你可以成功地修改原对象>>>s = "string">>>for c in s:... print(c)... s = "klllwe"string>>&g...
2019-06-11 19:22:38
513
原创 Manjaro cheatsheet
Manjaro cheatsheet命令功能pacman -Syy同步包数据库pacman -Syu同步软件库并更新系统到最新状态pacman -S package_name1 package_name2安装或升级pacman -S extra/package_name选择版本(比如extra和testing)pacman -S testing...
2019-06-11 17:49:45
288
原创 Linux Cheatsheet
Linux笔记使用命令替换文本中的字符串sed -i ‘s/original/new/g’ file.txtExplanation:sed = Stream EDitor-i = in-place (i.e. save back to the original file)The command string:s = the substitute commandoriginal ...
2019-06-11 17:48:58
2067
1
原创 OpenCV cheatsheet
OpenCV cheatsheet打开摄像头请使用opencv > 3.3.1.11版本 while True: ret, frame = cap.read() cv2.imshow('frame', frame) # 一个窗口用以显示原视频 if cv2.waitKey(1) & 0xFF == ord('q'): ...
2019-06-11 17:47:47
991
原创 Python cheatsheet
Python cheatsheetpandasdf = pd.read_csv('path') # read .csvdf.to_csv('path') # write .csv df.to_csv('path',header=True,index=True),header是列名,index是数字行名,两者默认都是True,将header设为False,第一行会称为列名,将index设为Tr...
2019-06-11 17:47:22
629
原创 Pytorch Cheatsheet
Pytorch笔记torch.no_grad()CLASS torch.autograd.no_grad[SOURCE]Context-manager that disabled gradient calculation.Disabling gradient calculation is useful for inference, when you are sure that you wi...
2019-06-11 17:46:58
950
原创 第四十四周学习笔记
第四十四周学习笔记论文阅读概述Fast, Diverse and Accurate Image Captioning Guided By Part-of-Speech,本文使用part-of-speech模板来生成image caption,规定了句子中每个词的词性,通过使用多个模板生成多样的caption,在速度、多样性和准确性上比基于GAN的模型和beam search的模型都要高Un...
2019-06-07 19:45:42
335
原创 Fast, Diverse and Accurate Image Captioning Guided By Part-of-Speech
Fast, Diverse and Accurate Image Captioning Guided By Part-of-Speech原文地址时间:2019年概括本文致力于建立一个fast,accurate,diverse的image caption模型,首先提出了传统beam search的慢、diversity不足,以及基于GAN、VAE方法的准确率不足的缺陷,然后提出了根据词性序列...
2019-06-07 19:36:57
1104
1
原创 Unsupervised Image Captioning
Unsupervised Image Captioning原文地址时间:2019 CVPRTencent AI LabIntro普遍的Image caption方法使用的是成对的数据,本文率先采用了无监督模式训练image caption模型,使用的数据不包括任何image-sentence pair本文的贡献主要有以下四点:率先使用了无监督方法来进行image caption提...
2019-06-07 19:36:49
2281
原创 Describing like Humans: on Diversity in Image Captioning
Describing like Humans: on Diversity in Image Captioning原文地址时间:2019 CVPRIntro当前的image captioning模型虽然在各种指标(BLEU METEOR ROUGE CIDEr)上超过了人类水平,但是这些以accuracy为度量甚至是训练目标的模型缺少了diversity,为此,本文提出了一个度量图片dive...
2019-06-07 19:36:37
818
原创 Very Deep Convolutional Networks For Large-Scale Image Recognition
Very Deep Convolutional Networks For Large-Scale Image Recognition原文地址时间:2014Intro本文的VGG网络在2014年的ImageNet竞赛中分别在定位和分类上获得第一和第二,主要的贡献是使用了小的(3×3)卷积核使得网络可以拓展到16-19层深。ConvNet ConfigurationsArchitectur...
2019-06-07 19:36:30
624
原创 CapSal: Leveraging Captioning to Boost Semantics for Salient Object Detection
CapSal: Leveraging Captioning to Boost Semantics for Salient Object Detection时间:2019CVPRIntro为了解决复杂场景下的目标检测问题,本文设计了一个CapSal模型,它包括两个子网络:Image Captioning Network(ICN)和Local-Global Perception Network(...
2019-06-07 19:36:20
1444
翻译 迁移学习
迁移学习翻译自英文笔记实践中,很少人从头开始训练神经网络(随机初始化),因为通常缺少一个足够大的数据集。通常,人们先在很大的数据集上预训练一个神经网络(比如:ImageNet),然后用这个网络作为初始化,或者固定的特征提取器,来训练自己感兴趣的任务,以下是三种主要的迁移学习方法:卷积网络作为特征提取器,拿到一个在ImageNet上预训练的卷积网络,将它的最后一个卷积层移除(最后一层是100...
2019-06-04 11:20:24
188
原创 CIDEr: Consensus-based Image Description Evaluation
CIDEr: Consensus-based Image Description Evaluation原文地址时间:2015Intro自动度量 description of an image 的困难提出了consensus-based 的度量协议:CIDErApproach给定一副图片和一系列人给出的描述,我们的目标是估计candidate和大多数ground truth的相似性...
2019-05-31 20:34:16
1579
2
原创 ROUGE: A Package for Automatic Evaluation of Summaries
ROUGE: A Package for Automatic Evaluation of Summaries原文地址时间:2004
2019-05-31 20:34:08
2288
原创 ImageNet Classification with Deep Convolutional Neural Networks
ImageNet Classification with Deep Convolutional Neural Networks原文地址时间:2012IntroImageNet是一个包含15 million的高分辨率图片数据集,其中包括了22000个类别,ILSVRC(ImageNet Large-Scale Visual Recognition Challenge)使用了ImageNet的...
2019-05-31 20:33:57
461
原创 第四十三周学习笔记
第四十三周学习笔记论文阅读ImageNet Classification with Deep Convolutional Neural Networks,提出了AlexNet,在ImageNet上首度超过传统方法ROUGE: A Package for Automatic Evaluation of Summaries,一个基于recall的nlg度量CIDEr: Consensus-b...
2019-05-31 20:32:24
258
原创 第四十二周学习笔记
第四十二周学习笔记论文阅读概述RCNN两个insight:proposal+CNN,ImageNet预训练模型+fine-tuning三个模块:proposal,CNN,SVM四个步骤:提出proposal,CNN提取特征,SVM分类,bounding box回归精炼boxFast RCNN解决RCNN慢、multi-stage、存储消耗多的问题对整张图片求特征图后,通过...
2019-05-24 19:32:32
171
原创 Semi-Supervised Classification with Graph Convolutional Networks
Semi-Supervised Classification with Graph Convolutional Networks原问地址时间:2017Intro要解决的问题:图上的结点分类,其中只有小部分结点有label。这是一个基于图的半监督学习,可以通过在损失函数中额外加一项graph-based regularization来解决:其中L0\mathcal{L}_0L0表示l...
2019-05-24 17:51:20
4311
原创 Single Image Haze Removal Using Dark Channel Prior
Single Image Haze Removal Using Dark Channel Prior时间:2019Intro本文使用了一个简单高效的去雾算法,他的原理基于一个对无雾图片的统计结果,在大多数非天空局部区域中总有一个像素点的至少一个通道的值很低,由此我们可以进行去雾操作背景常用的雾的形成公式为其中I是观测到的图像,J是原图,t是透射率,A是大气光成分,去雾就是要从I恢复J...
2019-05-24 17:48:44
2394
原创 Faster RCNN
Faster RCNN原文地址时间:2016年IntroSelective Search与高效的网络相比,还是大一个量级的时间复杂度,每张图片需要2s,相比于EdgeBoxes的0.2秒,使得Region proposal成为瓶颈。本文使用深度卷积网络来计算proposal,让Region Proposal Networks(RPNs)与目标检测网络共享卷积层,作者发现,卷积特征不仅能被...
2019-05-24 17:44:32
300
原创 Fast R-CNN
Fast R-CNN论文地址时间:2015年IntroR-CNN的缺点训练是一个多步骤的过程:fine-tune+SVM+bounding box regression训练在时间和空间上消耗很大test-time很慢R-CNN很慢的原因之一是卷积网络分别计算所有proposals,而没有共享计算(因为这些proposal大多有相交的部分)。SPPnets为了解决这个问题,先计...
2019-05-24 17:41:00
161
原创 RCNN论文阅读笔记
RCNN论文阅读笔记原文:Rich feature hierarchies for accurate object detection and semantic segmentation时间:2014年文章解决了什么问题目标检测发展停滞,通过复杂的ensemble模型才能勉强提高一些精度用了什么方法两个 insights在bottom-up region proposals中应用卷...
2019-05-24 17:32:44
214
原创 C++ 获取文件夹下所有文件名
C++ 获取文件夹下所有文件名使用c++17对文件系统的官方支持#include <filesystem>#include <iostream>namespace fs = std::filesystem;int main(){ string path = "./imgs"; for (const auto &entry : fs::direc...
2019-05-22 10:29:53
2527
1
原创 windows内网远程连接jupyter-notebook
windows内网远程连接jupyter-notebook服务器设置安装jupyter notebookpip install jupyter notebook设置密码ipython>>>from notebook.auth import passwd>>>passwd()输入并确认密码,赋值并保存输出的sha1:....生成jupyte...
2019-05-19 17:12:21
1430
原创 第四十一周学习笔记
第四十一周学习笔记论文阅读概述Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering结合Bottom-Up和Top-Down的信息,Bottom-up:Faster RCNN,Top-Down:Hierarchical LSTM两个LSTM,第一个用来做attention,第...
2019-05-17 17:02:44
408
原创 On the Automatic Generation of Medical Imaging Reports
On the Automatic Generation of Medical Imaging Reports原文地址时间:2018年IntroGeneration of medical image reports的困难一份完整的报告包括各种形式的信息,包括finding、tag、impression等,如图所示报告中的非正常区域很难找到报告很长,包括很多句子为了解决以上问题,我们...
2019-05-17 14:36:54
1486
2
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅