位运算常用手段总结

位运算常用手段总结

位运算替代加减乘除

// q*100
(q << 6) + (q << 5) + (q << 2))

// i/10  2^19 52428
(i * 52429) >>> (16+3)

获取高位或者低位二进制

  1. 获取低位 n &1
  2. 获取高位 n & (1 << 31)

n & (n-1) 的妙用

作用:

将n的二进制表示中的最低位为1的改为0,先看一个简单的例子:
n = 10100(二进制),则(n-1) = 10011 ==》n&(n-1) = 10000
可以看到原本最低位为1的那位变为0。

应用

判断一个数是否是2的方幂

n > 0 && ((n & (n - 1)) == 0 )

解释:
((n & (n-1)) == 0):
如果一个数是 2的方幂,那说明二进制只有一个1, 一次直接可以把低位1 消除,所有 ((n & (n-1)) == 0) 为true,则证明一个数是2的方幂

求某一个数的二进制表示中1的个数

while (n >0 ) {
count ++;
n &= (n-1);
}

计算N!的质因数2的个数。

容易得出N!质因数2的个数 = [N / 2] + [N / 4] + [N / 8] + …
下面通过一个简单的例子来推导一下过程:N = 10101(二进制表示)
现在我们跟踪最高位的1,不考虑其他位假定为0,
则在
[N / 2] 01000
[N / 4] 00100
[N / 8] 00010
[N / 8] 00001
则所有相加等于01111 = 10000 - 1
由此推及其他位可得:(10101)!的质因数2的个数为10000 - 1 + 00100 - 1 + 00001 - 1 = 10101 - 3(二进制表示中1的个数)
推及一般N!的质因数2的个数为N-(N二进制表示中1的个数)

经验总结

  1. 在数组求什么连续数量这些,最优的都是双指针, end-start, 这样相对自己用一个变量++,可以规避边界问题
  2. 生成字符串的时候,如果有向前插入的StringBuilder.insert(0,“helloiworld”), 可以考虑生成 char[] buf, buf[–index]=n,填装,实现逆向的效果,最后再return new String(buf);
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值