[Q]4EchoNStef

没人能逼着你刷题,更没人能阻止你刷题

1049. Mondriaan

直接上递推公式 f[i]=3*f[i-1]+f[i-2]-f[1-3] (i>=3)

通项公式为 f[i]=2*(f[0]+f[1]+...+f[n-3])+3*f[n-2]+2*f[n-1]

 

长度为1的区间内可能有2种情况,即两个正方形或一个长方形

长度为2的区间内去掉长度为1的区间中的情况有3种情况,即上面两个正方形,下面一个长方形,上下颠倒又是一种,还有两个长方形,共三种

长度大于或等于3的区间中想要不与长度为2的情况重复,只能两个长方形相互重叠一个长度,在空缺处补正方形,上下颠倒即有两种

由以上可得通项公式,由通项公式可得递推公式


#include <iostream>
#include <cstring>
using namespace std;
int f[1000001];
int main()
{
    int cases,o;
    int n;
    memset(f,0,sizeof(f));
    f[0]=1;
    f[1]=2;
    f[2]=7;
    for (int i=3; i<=1000001; i++)
    {
        f[i]=(3*f[i-1]+f[i-2]-f[i-3]+10)%10;//为防止负数取模错误,要加上10
    }
    cin>>cases;
    for (o=1; o<=cases; o++)
    {
        cin>>n;
        cout<<f[n]<<endl;
    }
    return 0;
}


阅读更多
个人分类: 刷题之旅
上一篇1692. Cover
下一篇1703. Obstacle Course(最短路径bfs)
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭