量化因子 - 风险类因子计算

60日夏普比率 sharpe_ratio_60
(Rp - Rf) / Sigma p
其中,Rp是个股的年化收益率,Rf是无风险利率(在这里设置为0.04),Sigma p是个股的收益波动率(标准差)
20日收益方差 Variance20
取21个交易日的收盘价,算出日收益率,再取方差
个股收益的120日偏度 Skewness120
取121个交易日的收盘价数据,计算日收益率,再计算其偏度
20日夏普比率 sharpe_ratio_20
(Rp - Rf) / Sigma p
其中,Rp是个股的年化收益率,Rf是无风险利率(在这里设置为0.04),Sigma p是个股的收益波动率(标准差)
60日收益方差 Variance60
取61个交易日的收盘价,算出日收益率,再取方差
120日收益方差 Variance120
取121个交易日的收盘价,算出日收益率,再取方差
120日夏普比率 sharpe_ratio_120
(Rp - Rf) / Sigma p 其中,Rp是个股的年化收益率,Rf是无风险利率(在这里设置为0.04),Sigma p是个股的收益波动率(标准差)
个股收益的60日偏度 Skewness60
取61个交易日的收盘价数据,计算日收益率,再计算其偏度
个股收益的20日偏度 Skewness20
取21个交易日的收盘价数据,计算日收益率,再计算其偏度
个股收益的120日峰度 Kurtosis120
取121个交易日的收盘价数据,计算日收益率,再计算其峰度值
个股收益的20日峰度 Kurtosis20
取21个交易日的收盘价数据,计算日收益率,再计算其峰度值
个股收益的60日峰度 Kurtosis60
取61个交易日的收盘价数据,计算日收益率,再计算其峰度值

本文探讨了如何通过计算60日、20日及120日夏普比率、收益方差和偏度(如偏度Skewness和峰度Kurtosis)来评估股票的风险。使用历史收盘价数据,详细介绍了这些风险指标的计算方法,以帮助投资者理解市场波动性和风险控制策略。
1万+

被折叠的 条评论
为什么被折叠?



