前沿AI模型实战
文章平均质量分 85
罗杰海贼团
IBM Data Scientist , TensorFlow开发者
展开
-
ChatGLM实战 - 文本信息抽取
本文对ChatGLM-6B模型进行简单尝试,稍许改造即能满足文本抽取场景的使用,使用成本低于chatgpt,支持本地部署,单卡成本低于openai。原创 2023-05-02 20:00:33 · 9345 阅读 · 2 评论 -
【深度学习】Ubuntu18.04+GPU驱动安装+Anaconda安装+Notebook远程访问+FRP内网穿透+公网访问Jupyter+TensorFlowGPU+Pycharm同步服务器代码环境
2年前写的,从零安装一台实验室内网环境下的V100服务器,利用FRP和阿里云公网EOS进行内网穿透,随时随地访问实验室内网GPU环境,在服务器上启动Jupyter外网访问服务+ssh映射,实现随时随地远程同步调用实验室GPU资源,运行本地Pycharm编写的代码。mac敲代码+调用V100服务器跑model,实现高效快速的开会环境,目前看来还有一定的借鉴意义,所以翻出来,有需要的同学可以参考一下哈~1. nvidia驱动安装1.1下载nvidia驱动下载地址选择自己对应型号的驱动安装:服务器.原创 2021-04-09 00:15:52 · 522 阅读 · 1 评论 -
《AI实战》PaddleOCR入门 - 01
0. PaddleOCR剪辑1. 下载项目代码git clone https://github.com/PaddlePaddle/PaddleOCR.git2. 安装环境由于笔者使用笔记本进行验证,这里只讲CPU环境的安装,GPU环境参考链接内容2.1 安装PaddlePaddle 2.0pip3 install --upgrade pip# If you have cuda9 or cuda10 installed on your machine, please run the f原创 2021-02-25 19:31:51 · 476 阅读 · 2 评论 -
《知识图谱》neo4j使用入门
neo4j知识图片构建原创 2021-01-24 15:33:27 · 2158 阅读 · 0 评论 -
【深度学习】Rasa中文对话机器人部署-下篇
Rasa中文对话机器人????部署-下篇0x01. Rasa中文天气对话机器人部署到Slack0x02. 参考资料内容紧接着上篇0x01 Slack部署对话机器人1. Slack官网2. 创建一个workspaces3. 启动Slack4. Slack部署Rasa的文档5. 创建一个Slack APP6. 增加APP权限需要添加一下权限app_mentions:read,channels:history,chat:write,groups:history,原创 2021-01-24 15:30:28 · 1127 阅读 · 0 评论 -
【深度学习】Rasa中文对话机器人入门-上篇
Rasa中文对话机器人????入门-上篇0x00. Rasa环境0x01. Rasa Demo Bot0x02. Rasa X0x03. 天气查询对话机器人0x04. 参考资料0x00. RASA对话机器人????1. 虚拟环境创建conda create -n rasa python=3.6source activate rasa2. 安装RASA国内镜像加速,用清华源不是很稳定,安装3次均中途失败,可以改换成阿里源,速度比较稳定,直接复制下面命令即可使用阿里源进行安装。原创 2021-01-07 12:35:08 · 3135 阅读 · 1 评论 -
【深度学习】PyCorrector中文文本纠错实战
PyCorrector中文文本纠错实战PyCorrector纠错工具实践和代码详解模型调参demo1. 简介中文文本纠错工具。音似、形似错字(或变体字)纠正,可用于中文拼音、笔画输入法的错误纠正。python3.6开发。pycorrector依据语言模型检测错别字位置,通过拼音音似特征、笔画五笔编辑距离特征及语言模型困惑度特征纠正错别字。1.1 在线Demohttps://www.borntowin.cn/product/corrector1.2 Question中文文本纠错原创 2021-01-07 12:31:09 · 25663 阅读 · 14 评论 -
【深度学习】BiDAF(Bi-Directional Attention Flow)机器阅读理解模型
BiDAF(Bi-Directional Attention Flow)机器阅读理解模型内容SQuAD数据介绍详细讲解Bi-Directional Attention Flow (BiDAF)。作业讲解,各种版本的代码数据介绍:SQuAD斯坦福大学自然语言计算组发布SQuAD数据集,诸多团队参与其中.先介绍一下SQuAD数据集的特点,SQuAD数据集包含10w个样例,每个样例大致由一个三元组构成(文章Passage, 相应问题Question, 对应答案Answer), 以下皆用(P原创 2021-01-07 12:30:22 · 3819 阅读 · 3 评论 -
【深度学习】RoBERTa模型详解和实践
RoBERTa模型详解和实践Robustly optimized BERT approach.内容介绍:RoBERTa改进思路和原文详解bert4keras工具使用基于RoBERTa的2020语言与智能技术竞赛-阅读理解任务实战代码:基于RoBERTa的2020语言与智能技术竞赛-阅读理解任务实战(Colab需翻墙)工具:bert4keras论文:https://arxiv.org/pdf/1907.11692.pdfCLUE阅读理解排行榜:https://www.cluebenc原创 2021-01-07 12:38:28 · 19255 阅读 · 1 评论
分享