【HAOI2015】按位或【Min-Max容斥】【FWT】

传送门

题意:开始时你有一个数 0 0 0,每次选出 [ 0 , 2 n − 1 ] [0,2^n-1] [0,2n1]中的一个数进行按位或,每个数选中的概率给定。求得到 2 n − 1 2^n-1 2n1的期望操作次数。

1 ≤ n ≤ 20 1\leq n\leq 20 1n20

神仙题

首先发现每一位都是独立的,可以分开考虑。

对于一个集合 S S S,记 F ( S ) F(S) F(S)表示 S S S的每一个元素出现的期望操作次数组成的可重集,记 M a x ( S ) = m a x ( F ( S ) ) , M i n ( S ) = m i n ( F ( S ) ) Max(S)=max(F(S)),Min(S)=min(F(S)) Max(S)=max(F(S)),Min(S)=min(F(S))

S = 2 n − 1 S=2^n-1 S=2n1,我们要求的就是 E ( M a x ( S ) ) E(Max(S)) E(Max(S))

这个不好求,但可以Min-Max容斥一下?

E ( M a x ( S ) ) = ∑ T ⊆ S ( − 1 ) ∣ T ∣ + 1 E ( M i n ( T ) ) E(Max(S))=\sum_{T\subseteq S}(-1)^{|T|+1}E(Min(T)) E(Max(S))=TS(1)T+1E(Min(T))

可以直接枚举子集,现在考虑怎么求 E ( M i n ( T ) ) E(Min(T)) E(Min(T))

这玩意的意义是或到和 T T T有交集的期望次数

设每次选出一个和 T T T有交集的数的概率是 p p p

E ( M i n ( T ) ) = ∑ i = 1 ∞ i ( 1 − p ) i − 1 p E(Min(T))=\sum_{i=1}^{\infin}i(1-p)^{i-1}p E(Min(T))=i=1i(1p)i1p

= p ∑ i = 1 ∞ i ( 1 − p ) i − 1 =p\sum_{i=1}^{\infin}i(1-p)^{i-1} =pi=1i(1p)i1

s = ∑ i = 1 ∞ i ( 1 − p ) i − 1 s=\sum_{i=1}^{\infin}i(1-p)^{i-1} s=i=1i(1p)i1

( 1 − p ) s = ∑ i = 2 ∞ ( i − 1 ) ( 1 − p ) i − 1 (1-p)s=\sum_{i=2}^{\infin}(i-1)(1-p)^{i-1} (1p)s=i=2(i1)(1p)i1

= ∑ i = 1 ∞ ( i − 1 ) ( 1 − p ) i − 1 =\sum_{i=1}^{\infin}(i-1)(1-p)^{i-1} =i=1(i1)(1p)i1

p s = ∑ i = 1 ∞ ( 1 − p ) i − 1 ps=\sum_{i=1}^{\infin}(1-p)^{i-1} ps=i=1(1p)i1

= ∑ i = 0 ∞ ( 1 − p ) i =\sum_{i=0}^{\infin}(1-p)^i =i=0(1p)i

( 1 − p ) p s = ∑ i = 1 ∞ ( 1 − p ) i (1-p)ps=\sum_{i=1}^{\infin}(1-p)^i (1p)ps=i=1(1p)i

p 2 s = 1 p^2s=1 p2s=1

s = 1 p 2 s=\frac{1}{p^2} s=p21

E ( M i n ( T ) ) = p s = 1 p E(Min(T))=ps=\frac{1}{p} E(Min(T))=ps=p1

p p p仍然不好求。

正难则反,我们求和 T T T没有交集的概率

T T T的补集的子集的概率之和

第一次写的子集标记,发现会被算多次

然后发现不是个 F W T FWT FWT板子吗

然后没了

注意不枚举空集 如果遇到无穷大直接输出

复杂度 O ( n 2 n ) O(n2^n) O(n2n)

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cctype>
using namespace std;
double p[1<<20];
const int d[]={0,1,1,2,1,2,2,3};
inline int count(int x)
{
	int ans=0;
	while (x)
	{
		ans+=d[x&7];
		x>>=3;
	}
	return ans;
}
int main()
{
	int n;
	scanf("%d",&n);
	for (int i=0;i<(1<<n);i++) scanf("%lf",&p[i]);
	for (int mid=1;mid<(1<<n);mid<<=1)
		for (int s=0;s<(1<<n);s+=(mid<<1))
			for (int k=0;k<mid;k++)
				p[s+mid+k]+=p[s+k];
	double sum=0;
	for (int i=1;i<(1<<n);++i)
	{
		double t=1-p[(~i)&((1<<n)-1)];
		if (t<1e-10)
		{
			puts("INF");
			return 0;
		}
		t=1/t;
		sum+=((count(i)&1)? t:-t);
	}
	printf("%.10f\n",sum);
	return 0;
}

wtcl

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值