二分查找法
二分法查找,是在一个有序的数组中查找关键值的一种计算机算法,可以有效提高数组的查找速度。
题目描述
请在一个有序递增数组中(不存在相同元素),采用二分查找,找出值x的位置,如果x在数组中不存在,请输出-1!
输入
第一行,一个整数n,代表数组元素个数(n <= 106)
第二行,n个数,代表数组的n个递增元素(1<=数组元素值<=108)
第三行,一个整数x,代表要查找的数(0<=x<=108)
输出
x在数组中的位置,或者-1。
样例输入
10
1 3 5 7 9 11 13 15 17 19
3
样例输出
2
程序代码
using namespace std;
//有序数组中
/*
思想:
先找到数组中的中间位置mid,判断:
1,如果要找的数 x==a[mid],找到了mid就是位置
2,如果要找的数 x>a[mid] ,说明要找的数在后一半,递归在后一半找
3,如果要找的数 x<a[mid] ,找到要找的数在前一半,递归在前一半找
在下标为 left ~ right 之间的范围内找数,mid = (left + right) / 2
当 left <= right
*/
int a[1000100], n, x;
// 在a数组中递归求解x的位置
int fun(int left, int right)
{
// 递归停止条件
if (left > right) return -1;
// 其余情况下,递归求解
// 插值查找:要求数组元素有序,且相对均匀(相邻元素之间的插值均匀)
int mid = left + (x - a[left]) * (right - left) / (a[right] - a[left]);
if (a[mid] == x)
{
return mid + 1;
}
else if (x < a[mid])
{
return fun(left, mid - 1);
}
else if (x > a[mid])
{
return fun(mid + 1, right);
}
}
int main()
{
int i;
// r表示要找元素的位置
int r = -1; // 假设找不到
int left, right, mid;
cin >> n;
for (int i = 0; i < n; i++)
{
cin >> a[i];
}
cin >> x;
cout << fun(0, n - 1);
}
#include <iostream>
using namespace std;
//有序数组中
/*
思想:
先找到数组中的中间位置mid,判断:
1,如果要找的数 x==a[mid],找到了mid就是位置
2,如果要找的数 x>a[mid] ,说明要找的数在后一半,递归在后一半找
3,如果要找的数 x<a[mid] ,找到要找的数在前一半,递归在前一半找
在下标为 left ~ right 之间的范围内找数,mid = (left + right) / 2
当 left <= right
*/
int a[1000100], n, x;
// 在a数组中递归求解x的位置
int fun(int left, int right)
{
// 递归停止条件
if (left > right) return -1;
// 其余情况下,递归求解
int mid = (left + right) / 2;
if (a[mid] == x)
{
return mid + 1;
}
else if (x < a[mid])
{
return fun(left, mid - 1);
}
else if (x > a[mid])
{
return fun(mid + 1, right);
}
}
int main()
{
int i;
// r表示要找元素的位置
int r = -1; // 假设找不到
int left, right, mid;
cin >> n;
for (int i = 0; i < n; i++)
{
cin >> a[i];
}
cin >> x;
cout << fun(0, n - 1);
}