Python网络爬虫验证码识别

本文介绍如何通过Python的tesseract库来识别网页登录时的图像验证码,借助selenium模拟浏览器行为,处理验证码图像(灰度+二值化),尽管识别准确性可能因干扰因素而受影响,但多尝试可以提高命中率。
摘要由CSDN通过智能技术生成

本文主要利用tesseract识别网页登陆中的验证码(从图像的角度,不是Cookie)

很多人对CAPTCHA(验证码)很熟悉,但是很少有人知道其含义:全自动区分计算机和人类的图灵测试。通俗的讲就是是一种区分人和人工智能程序的方法。很多的网页都设置了验证码,常见的就是由“字母数字”组成的图片,如下:
在这里插入图片描述

本文的代码是利用selenium模拟浏览器的运行,识别登陆界面的验证码,分割验证码的区域然后识别验证码(光学字符识别)。

# -*- coding: utf-8 -*-
"""
Created on Sun Apr 26 17:42:23 2020

@author: dell
"""

import re  # 用于正则
from PIL import Image  # 用于打开图片和对图片处理
import tesserocr
import pytesseract  # 用于图片转文字
from selenium import webdriver  # 用于打开网站
import time  # 代码运行停顿
import requests



def get_pictures():
        try:
            driver = webdriver.Chrome()
            driver.get('https:XXXXXXXXXXXX/')
            driver.refresh() #刷新页面
            driver.maximize_window() #浏览器最大化
            # time.sleep(10)
        
Python爬虫验证码识别是指在进行爬虫时,遇到网页上设置的验证码,使用特定的技术来自动识别验证码并绕过验证码验证。这是一种非常重要的技术,在Python爬虫中起到关键作用。[2] 实现Python爬虫验证码识别可以按照以下步骤进行: 1. 下载验证码图片:首先需要准备一些验证码图片。可以通过在网络上搜索验证码图片进行下载,或者使用Python爬虫程序去爬取目标网站的验证码。例如,可以手动下载一个简单的数字验证码图片,并保存为“test.jpg”文件。 2. 图像预处理:对下载的验证码图片进行预处理,包括去噪、二值化、降噪等操作。这可以通过使用Python的图像处理库,如OpenCV,来实现。 3. 特征提取:从预处理后的验证码图片中提取特征,例如字符的形状、颜色、纹理等信息。这可以通过使用图像处理和机器学习的算法和技术来实现。 4. 训练模型:使用提取的特征和已知的验证码样本进行训练,构建一个验证码识别模型。可以使用机器学习算法,如支持向量机(SVM)或深度学习算法,如卷积神经网络(CNN)来训练模型。 5. 验证码识别:使用训练好的模型对新的验证码进行识别。可以将验证码图片输入到模型中,模型将输出对应的验证码结果。 6. 验证码绕过:根据验证码识别的结果,可以编写代码来绕过验证码验证,实现自动化的爬取。 需要注意的是,验证码识别是一项复杂的任务,识别效果可能会受到多种因素的影响,如验证码的复杂程度、噪音干扰、字体变化等。因此,在实际应用中,需要根据具体情况选择合适的处理方法和技术,以达到最佳的识别效果。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [Python爬虫验证码识别](https://blog.csdn.net/naer_chongya/article/details/130785840)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>