LuRiCheng的博客

退役了.

51NOD 1040 1040 最大公约数之和 数论 欧拉函数

1040 最大公约数之和
题目来源: rihkddd
基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 收藏  关注
给出一个n,求1-n这n个数,同n的最大公约数的和。比如:n = 6
1,2,3,4,5,66的最大公约数分别为1,2,3,2,1,6,加在一起 = 15
Input
1个数N(N <= 10^9)
Output
公约数之和
Input示例
6
Output示例
15

设整数d,满足n%d=0;
gcd(n,k)=d —> nx + ky = d —-> n/d * x + k/d *y = 1
显然 对任意k<=n,满足gcd(n/d,k/d)=1的k的个数 就是gcd(n,k)=d的k个数
而这个k的个数就等于phi(n/d) (n的欧拉函数)
所以枚举d,将d*phi(n/d)累加就是最终答案


#include<iostream>
#include<stdlib.h>
#include<stdio.h>
#include<string>
#include<vector>
#include<deque>
#include<queue>
#include<algorithm>
#include<set>
#include<map>
#include<stack>
#include<time.h>
#include<math.h>
#include<list>
#include<cstring>
#include<fstream>
//#include<memory.h>
using namespace std;
#define ll long long
#define ull unsigned long long
#define pii pair<int,int>
#define INF 1000000007
#define pll pair<ll,ll>
#define pid pair<int,double>

void caulate_factor(int n,vector<int>&factor){//分解n的质因子
    factor.clear();
    for(int i=2,end=sqrt(n+1);i<=end;++i){
        if(n%i==0){
            factor.push_back(i);
            while(n%i==0){
                n/=i;
            }
        }
        if(i>=n)
            break;
    }
    if(n!=1)
        factor.push_back(n);
}

ll phi(ll n,vector<int>&factor){
    ll ans=n;
    for(int i=0;i<factor.size();++i){
        ans=ans*(factor[i]-1)/factor[i];
    }
    return ans;
}

ll slove(int n){
    ll ans=0;
    vector<int>factor_fac;
    for(int i=1,end=sqrt(n);i<=end;++i){//枚举d 
        if(n%i==0){
            int factor=i;
            caulate_factor(n/factor,factor_fac);
            ans+=factor*phi(n/factor,factor_fac);
            if(n/i>end){
                factor=n/i;
                caulate_factor(n/factor,factor_fac);
                ans+=factor*phi(n/factor,factor_fac);
            }
        }
    }
    return ans;
}

int main()
{
    //freopen("/home/lu/文档/r.txt","r",stdin);
    //freopen("/home/lu/文档/w.txt","w",stdout);
    int n;
    while(~scanf("%d",&n)){
        printf("%lld\n",slove(n));
    }
    return 0;
}
阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/LuRiCheng/article/details/53609507
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭