人工神经网络简介
1.概念
人工神经网络是一种模仿大脑神经元结构的连接主义,如下图所示。其中,节点模拟神经元,节点之间的边模拟神经元之间的突触。输入节点的值x与对应边的权重w相乘再累加当做输出节点的输入,输出节点包含一个激活函数f,由该函数决定输出节点是兴奋还是抑制,即输出y。

用公式具体定义如下:
![]()
2.发展历史
1943年,美国心理学家McCulloch和数学逻辑学家Pitts建立了神经网络和数学模型,称之为MP模型。他们证明了单个神经元具有执行逻辑的功能,从此开创了人工神经网络研究的时代。
1958年,美国心理学家Rosenblatt提出了感知器(perceptron)算法。感知器是最简单的神经网络,只有一个神经元,它在MP模型的基础上加入了权值,可以实现

本文介绍了人工神经网络的基本概念,如神经元模型和激活函数,以及其发展历史,包括MP模型、感知器、误差反向传播算法等里程碑事件。同时,阐述了深度学习与人工智能、机器学习的关系,强调了深度学习在现代神经网络中的重要地位。
最低0.47元/天 解锁文章
8万+

被折叠的 条评论
为什么被折叠?



