使用Python的Pandas库实现基于用户的协同过滤推荐算法

版权声明:原创文章欢迎转载,转载请注明出处 https://blog.csdn.net/lushuangning/article/details/79951568

本文在下文的代码基础上修改而来:

【笔记3】用pandas实现矩阵数据格式的推荐算法 (基于用户的协同)

环境 版本
Python 3.5.5
Pandas 0.22.0
import pandas as pd


df = None


def dataSet2Matrix(filename):
    """
       导入训练数据
       :param filename: 数据文件路径
    """
    table_name = ['userId', 'movieId', 'rating', 'timestamp']
    # 按照','分割读取csv文件
    ratings = pd.read_table(filename, sep=',', header=0, names=table_name)
    global df
    # 转换成User-Item矩阵
    df = ratings.pivot(index='userId', columns='movieId', values='rating')

你可以使用MovieLens提供的数据集,不过,为了便于阐述,这里使用一个很小的测试数据集。
导入test.csv这个测试数据,看dataSet2Matrix函数是否执行成功。你可以在这里下载这个测试数据。
数据的格式为:用户ID,电影ID,评分(5分制),时间戳

dataSet2Matrix('test.csv')
df
userId/movieId 1 2 3 4 5 6 7 8
1 3.5 2.0 NaN 4.5 5.0 1.5 2.5 2.0
2 2.0 3.5 4.0 NaN 2.0 3.5 NaN 3.0
3 5.0 1.0 1.0 3.0 5.0 1.0 NaN NaN
4 3.0 4.0 4.5 NaN 3.0 4.5 4.0 2.0
5 NaN 4.0 1.0 4.0 NaN NaN 4.0 1.0
6 NaN 4.5 4.0 5.0 5.0 4.5 4.0 4.0
7 5.0 2.0 NaN 3.0 5.0 4.0 5.0 NaN
8 3.0 NaN NaN 5.0 4.0 2.5 3.0 4.0

可以看到,成功将数据集转化成了UI矩阵。

之后,我们需要构建共同评分矩阵。代码如下:

# 构建共同的评分向量
def build_xy(user_id1, user_id2):
    bool_array = df.loc[user_id1].notnull() & df.loc[user_id2].notnull()
    return df.loc[user_id1, bool_array], df.loc[user_id2, bool_array]

我们测试下userId分别为1和2的两个用户的共同评分矩阵:

print(build_xy(1,2))
    (movieId
    1    3.5
    2    2.0
    5    5.0
    6    1.5
    8    2.0
    Name: 1, dtype: float64, movieId
    1    2.0
    2    3.5
    5    2.0
    6    3.5
    8    3.0
    Name: 2, dtype: float64)

对比UI矩阵,1和2的共同评分向量是正确的,即用户1和用户2都曾经对电影1、2、5、6、8做出过评价。

# 欧几里德距离
def euclidean(user_id1, user_id2):
    x, y = build_xy(user_id1, user_id2)
    try:
        value = sum((x - y)**2)**0.5
    except ZeroDivisionError:
        value = 0
    return value


# 余弦相似度
def cosine(user_id1, user_id2):
    x, y = build_xy(user_id1, user_id2)
    # 分母
    denominator = (sum(x*x)*sum(y*y))**0.5
    try:
        value = sum(x*y)/denominator
    except ZeroDivisionError:
        value = 0
    return value


# 皮尔逊相关系数
def pearson(user_id1, user_id2):
    x, y = build_xy(user_id1, user_id2)
    mean1, mean2 = x.mean(), y.mean()
    # 分母
    denominator = (sum((x-mean1)**2)*sum((y-mean2)**2))**0.5
    try:
        value = sum((x - mean1) * (y - mean2)) / denominator
    except ZeroDivisionError:
        value = 0
    return value

我们来看一下用户1和用户2的皮尔逊相关系数

print(pearson(1,2))
    -0.9040534990682686
metric_funcs = {
    'euclidean': euclidean,
    'pearson': pearson,
    'cosine': cosine
}


# 计算最近的邻居
def computeNearestNeighbor(user_id, metric='pearson', k=3):
    """
    metric: 度量函数
    k:      返回k个邻居
    返回:pd.Series,其中index是邻居名称,values是距离
    """
    if metric in ['manhattan', 'euclidean']:
        return df.drop(user_id).index.to_series().apply(metric_funcs[metric], args=(user_id,)).nsmallest(k)
    elif metric in ['pearson', 'cosine']:
        return df.drop(user_id).index.to_series().apply(metric_funcs[metric], args=(user_id,)).nlargest(k)

我们使用皮尔逊相似度计算一下与用户3兴趣最相近的3个用户:

print(computeNearestNeighbor(3))
    userId
    1    0.819782
    6    0.801784
    7    0.766965
    Name: userId, dtype: float64
# 向给定用户推荐(返回:pd.Series)
def recommend(user_id):
    # 找到距离最近的用户id
    nearest_user_id = computeNearestNeighbor(user_id, metric='cosine').index[0]
    print('最近邻用户id:', nearest_user_id)
    # 找出邻居评价过、但自己未曾评价的乐队(或商品)
    # 结果:index是商品名称,values是评分
    return df.loc[nearest_user_id, df.loc[user_id].isnull() & df.loc[nearest_user_id].notnull()].sort_values()

尝试对用户3做出推荐:

recommend(3)
    最近邻用户id: 1

    movieId
    8    2.0
    7    2.5
    Name: 1, dtype: float64
阅读更多 登录后自动展开
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页