lusing的专栏

Android爱好者,C++爱好者,汇编爱好者,数学爱好者

排序:
默认
按更新时间
按访问量

Tensorflow快餐教程(13) - 程序员学深度学习快速入门五步法

程序员学深度学习快速入门五步法 作为一个程序员,我们可以像学习编程一样学习深度学习模型开发。我们以Keras为例来说明。 我们可以用5步 + 4种基本元素 + 9种基本层结构,这5-4-9模型来总结。 5步法: 1. 构造网络模型 2. 编译模型 3. 训练模型 4. 评估模型 5...

2018-06-04 21:19:57

阅读数:11608

评论数:1

Tensorflow快餐教程(12) - 用机器写莎士比亚的戏剧

高层框架:TFLearn和Keras 上一节我们学习了Tensorflow的高层API封装,可以通过简单的几步就生成一个DNN分类器来解决MNIST手写识别问题。 尽管Tensorflow也在不断推进Estimator API。但是,这并不是工具的全部。在Tensorflow官方的API方外,...

2018-05-29 20:59:14

阅读数:1320

评论数:0

Tensorflow快餐教程(11) - 不懂机器学习就只调API行不行?

高层封装API 有同学问,我们学习Tensorflow就是想学习一套可以用的套,像编程一样调用就行了,不想学习机器学习的细节,有没有这样的方式? 针对于已经有成熟解决方案的模型,why not呢? 在前面已经快速将CNN, RNN的大致概念和深度学习的简史走马观花过了一遍之后,我们就可以开始...

2018-05-18 21:24:29

阅读数:771

评论数:1

Tensorflow快餐教程(10) - 循环神经网络

循环神经网络 上节介绍了在图像和语音领域里大放异彩引发革命的CNN。但是,还有一类问题是CNN所不擅长的。这类问题的特点是上下文相关序列,比如理解文字。这时需要一种带有记忆的结构,于是,深度学习中的另一法宝RNN横空出世了。 大家还记得第8节中我们讲的人工神经网络的第二次复兴吗?没错,第二次复...

2018-05-08 21:33:08

阅读数:883

评论数:0

《梁宁产品思维30讲》学习笔记

我的《梁宁产品思维30讲》学习笔记

2018-05-07 14:06:49

阅读数:1980

评论数:0

Tensorflow快餐教程(9) - 卷积

卷积 卷积就是滑动中提取特征的过程 在数学中,卷积convolution是一种函数的定义。它是通过两个函数f和g生成第三个函数的一种数学算子,表征函数f与g经过翻转和平移的重叠部分的面积。其定义为: h(x)=f(x)∗g(x)=∫∞−∞f(t)g(x−t)dth(x)=f(x)∗g(x...

2018-05-04 18:41:06

阅读数:716

评论数:0

Tensorflow快餐教程(8) - 深度学习简史

深度学习简史 从机器学习流派说起 如果要给机器学习划分流派的话,初步划分可以分为『归纳学习』和『统计学习』两大类。所谓『归纳学习』,就跟我们平时学习所用的归纳法差不多,也叫『从样例中学习』。 归纳学习又分为两大类,一类是像我们归纳知识点一样,把知识分解成一个一个的点,然后进行学习。因为最...

2018-05-03 16:28:11

阅读数:813

评论数:0

Tensorflow快餐教程(7) - 梯度下降

梯度下降 学习完基础知识和矩阵运算之后,我们再回头看下第一节讲的线性回归的代码: import tensorflow as tf import numpy as np trX = np.linspace(-1, 1, 101) trY = 2 * trX + np.random.rand...

2018-05-03 12:10:25

阅读数:715

评论数:0

Tensorflow快餐教程(6) - 矩阵分解

矩阵分解 特征向量和特征值 我们在《线性代数》课学过方阵的特征向量和特征值。 定义:设A∈Fn×nA∈Fn×nA{\in}F^{n{\times}n}是n阶方阵。如果存在非零向量X∈Fn×1X∈Fn×1X{\in}F^{n{\times}1}使AX=λXAX=λXAX={\lambda}X对...

2018-04-27 21:23:22

阅读数:828

评论数:0

Tensorflow快餐教程(5) - 范数

矩阵进阶 - 范数 作为快餐教程,我们尽可能多上代码,多介绍工具,少讲原理和公式。但是我也深知这样是无法讲清楚的,毕竟问题的复杂度摆在这里呢。与大家一起在Tensorflow探索一圈之后,我一定要写一个数学基础比较扎实的进一步教程。 范数(norm)初识 一般大学本科的《线性代数》教材中...

2018-04-25 16:58:42

阅读数:821

评论数:0

Tensorflow快餐教程(4) - 矩阵

矩阵 矩阵的初始化 矩阵因为元素更多,所以初始化函数更多了。光靠tf.linspace,tf.range之类的线性生成函数已经不够用了。 可以通过先生成一个线性序列,然后再reshape成一个矩阵的方式来初始化。 例: >>&a...

2018-04-24 21:38:13

阅读数:651

评论数:0

Tensorflow快餐教程(3) - 向量

向量 向量在编程语言中就是最常用的一维数组。 二维数组叫做矩阵,三维以上叫做张量。 向量虽然简单,高效,且容易理解。但是与操作0维的标量数据毕竟还是不同的。比如向量经常用于表示一个序列,生成序列像标量一样一个一个手工写就不划算了。当然可以用循环来写。在向量中这样还好,如果是在矩阵或者是张量中...

2018-04-23 19:06:27

阅读数:1025

评论数:0

Tensorflow快餐教程(2) - 标量运算

Tensorflow的Tensor意为张量。一般如果是0维的数组,就是一个数据,我们称之为标是Scalar;1维的数组,称为向量Vector;2维的数组,称为矩阵Matrics;3维及以上的数组,称为张量Tensor。 在机器学习中,用途最广泛的是向量和矩阵的运算。这也是我们学习中的第一个难关。...

2018-04-17 21:05:13

阅读数:1297

评论数:0

Tensorflow快餐教程(1) - 30行代码搞定手写识别

去年买了几本讲tensorflow的书,结果今年看的时候发现有些样例代码所用的API已经过时了。看来自己维护一个保持更新的Tensorflow的教程还是有意义的。这是写这一系列的初心。 快餐教程系列希望能够尽可能降低门槛,少讲,讲透。 为了让大家在一开始就看到一个美好的场景,而不是停留在漫长的...

2018-04-16 19:33:32

阅读数:2683

评论数:5

NumPy快餐教程(2) - 多维数组进阶

NumPy快餐教程(2) - 多维数组进阶 上一讲我们介绍了ndarray的形状变化和生成方法,这一节我们继续讨论多维数组的使用方法。 访问元素 NumPy中使用[]方括号来访问元素。如果是一维数组,就用下标数字,例如a[1],如果是多维数组,就在方括号中使用元组tuple,例如a[(2...

2018-01-04 19:33:56

阅读数:294

评论数:0

NumPy快餐教程(1) - 如何生成多维数组

NumPy快餐教程(1) - 如何生成多维数组 Python现在是最热门的人工智能语言,各种工具的支持如Google的Tensorflow,都是首选支持Python的。 但是,与R语言不同,Python语言设计时,并没有考虑对于矩阵运算,统计计算等功能做专项支持。于是我们需要NumPy库来补足...

2018-01-04 10:51:09

阅读数:357

评论数:0

TypeScript快餐教程 (1) - 初识

TypeScript是Microsoft大神,前Borland大神Anders领导开发的支持类型的Java Script

2017-11-02 21:01:02

阅读数:485

评论数:0

Clojure快餐教程(1) - 运行在JVM上的Lisp方言

Java作为目前为止被使用最广泛的使用虚拟机的编程语言,带动了JVM上语言族的繁荣。 有根红苗正的为JVM设计的动态语言Groovy,目前最主要被用于Gradle编译环境中;也有Jython, JRuby等动态语言在JVM上的实现,也有scala这样强大的混合语言。 在这之中,clojure是...

2017-10-31 20:35:03

阅读数:376

评论数:0

Python API快餐教程(1) - 字符串查找API

字符串处理相关API字符串是7种序列类型中的一种。 除了序列的操作函数,比如len()来求字符串长度之外,Python还为字符串提供丰富到可以写个编辑器的API.查找类API首先,下面的查找API都是为了查找位置,或者查一共有几次这样的操作。 如果只是想判断一个字符串是不是另一个字符串的子串的...

2017-08-02 20:04:14

阅读数:612

评论数:0

Vim技能修炼教程(17) - 编译自己的Vim

编译自己的Vim前面我们已经对Vim有比较丰富的了解了。我们也知道Vim有很多编译时的选项,很多功能依赖于这些编译选项。其中最重要的就是脚本语言的支持,很多发行版本是不全的。为了支持我们所需要的功能,我们需要编译自己的Vim.

2017-07-24 11:40:31

阅读数:411

评论数:0

提示
确定要删除当前文章?
取消 删除