# 压缩感知

#### 1

arg ⁡ min ⁡ x ∈ R n { ∥ x ∥ 0 : A x = A x 0 } = x 0 \underset{x \in \mathbb{R}^{n}}{\arg \min }\left\{\|x\|_{0}: Ax=A x_{0}\right\}=x_{0}

⇐ \Leftarrow 假设 A A 中任 2 s 2s 列线性独立，用反证。

∥ z 0 ∥ 0 ≤ s \|z_{0}\|_0\leq s ∥ x 0 ∥ 0 ≤ s \|x_{0}\|_0\leq s ，则
∥ z 0 − x 0 ∥ 0 ≤ 2 s \|z_0 - x_{0}\|_0\leq 2s

A ( z 0 − x 0 ) = 0 A(z_0-x_0)=0 → \rightarrow 存在 k k 列线性相关且 k ≤ 2 s k\leq 2s ，矛盾。

⇒ \Rightarrow

x 1 a 1 + ⋯ + x 2 s a 2 s = 0 x_1a_1+\cdots+x_{2s}a_{2s}=0

x 0 = ( ⋯   , 0 , ⋯   , x 1 , x 2 , ⋯   , x s , ⋯   , 0 , ⋯   ) ∈ R N x_0=(\cdots,0,\cdots,x_1,x_2,\cdots,x_s,\cdots,0,\cdots)\in \mathbb{R}^N
x ~ 0 = ( ⋯   , 0 , ⋯   , x s + 1 , x s + 2 , ⋯   , x 2 s , ⋯   , 0 , ⋯   ) ∈ R N \tilde{x}_0=(\cdots,0,\cdots,x_{s+1},x_{s+2},\cdots,x_{2s},\cdots,0,\cdots)\in \mathbb{R}^N

A x ~ 0 = A x 0 A\tilde x_0=Ax_0 ，矛盾。

#### 2

s p a r k ( A ) = n \mathrm {spark}(A) = n A A 中任 n n 列线性独立，存在 n + 1 n+1 列线性相关。 s p a r k ( A ) ≤ r a n k ( A ) \mathrm {spark}(A) \leq \mathrm{rank}(A)

#### 3

arg ⁡ min ⁡ x ∈ R n { ∥ x ∥ 1 : A x = A x 0 } = x 0 \underset{x \in \mathbb{R}^{n}}{\arg \min }\left\{\|x\|_{1}: Ax=A x_{0}\right\}=x_{0}

#### 5

arg ⁡ min ⁡ x ∈ R n { ∥ x ∥ 1 : A x = A x 0 } = x 0 \underset{x \in \mathbb{R}^{n}}{\arg \min }\left\{\|x\|_{1}: Ax=A x_{0}\right\}=x_{0}

⇐ \Leftarrow 假设 A A 满足k-阶零空间性质，用反证。

arg ⁡ min ⁡ x ∈ R n { ∥ x ∥ 1 : A x = A x 0 } = x ♯ ≠ x 0 \underset{x \in \mathbb{R}^{n}}{\arg \min }\left\{\|x\|_{1}: Ax=A x_{0}\right\}=x^{\sharp}\neq x_0

T = supp ( x 0 ) T=\text{supp} (x_0) ，只要证 ∥ η T ∥ 1 ≥ ∥ η T c ∥ 1 \|\eta_T\|_1\geq \|\eta_{T^c}\|_1

∥ x T ♯ ∥ 1 + ∥ x T c ♯ ∥ 1 = ∥ x T ♯ ∥ 1 ≤ ∥ x 0 ∥ 1 \|x_T^\sharp\|_1+\|x_{T^c}^\sharp\|_1=\|x_T^\sharp\|_1\leq\|x_0\|_1

∥ η T c ∥ 1 = ∥ x T c ♯ ∥ 1 ≤ ∥ x 0 ∥ 1 − ∥ x T ♯ ∥ 1 ≤ ∥ ( x 0 − x ♯ ) T ∥ 1 = ∥ η T ∥ 1 \|\eta_{T^c}\|_1=\|x^\sharp_{T^c}\|_1\leq \|x_0\|_1-\|x_T^\sharp\|_1\leq\|(x_0-x^\sharp)_T\|_1=\|\eta_T\|_1

⇒ \Rightarrow

A η = A ( η T + η T c ) = 0 A\eta = A(\eta_T+\eta_{T^c})=0 ⇓ \Downarrow
A ( η T ) = A ( − η T c ) A(\eta_T) = A(-\eta_{T^c})

arg ⁡ min ⁡ x ∈ R n { ∥ x ∥ 1 : A x = A η T } = η T \underset{x \in \mathbb{R}^{n}}{\arg \min }\left\{\|x\|_{1}: Ax=A \eta_{T}\right\}=\eta_{T}

#### 6

( 1 − δ k ) ∥ x ∥ 2 2 ≤ ∥ A x ∥ 2 2 ≤ ( 1 + δ k ) ∥ x ∥ 2 2 (1-\delta_k)\|x\|^2_2\leq\|Ax\|^2_2\leq(1+\delta_k)\|x\|_2^2

#### 7

arg ⁡ min ⁡ x ∈ R n { ∥ x ∥ 1 : A x = A x 0 } = x 0 \underset{x \in \mathbb{R}^{n}}{\arg \min }\left\{\|x\|_{1}: Ax=A x_{0}\right\}=x_{0}

000 R. DeVore, Deterministic constructions of compressed sensing
matrices, Journal of Complexity 2007, 23: 918-925. Z. Xu, Deterministic
sampling of sparse trigonometric polynomials, Journal of Complexity
2011, 27: 133-140. J. Bourgain, S. J. Dilworth, K. Ford, S. Konyagin and
D. Kutzarova, Explicit constructions of RIP matrices and related
problems. Duke Math. J, 2011, 159: 145- 185. Guangwu Xu, Zhiqiang Xu,
Compressed Sensing Matrices from Fourier Matri- ces, arXiv:1301.0373. W.
Yin, S. Osher, D. Goldfarb, and J. Darbon, Bregman iterative algorithms
for l1-minimization with applications to compressed sensing, SIAM
Journal on Imaging Sciences, 2008, 1: 143-168. Z. Xu, A remark about
orthogonal matching pursuit algorithm, arXiv:1005.3093. Lorne Applebauma
, Stephen D. Howard, Stephen Searle, Robert Calderbank, Chirp sensing
codes: Deterministic compressed sensing measurements for fast recover,
Appl. Comput. Harmon. Anal. 26 (2009) 283-290. Z. Xu, Deterministic
sampling of sparse trigonometric polynomials, Journal of Complexity
2011, 27: 133-140. E. Candes, Y. Eldar, T. Strohmer and v. Voroninski,
Phase retrieval via matrix completion, arXiv: 1109.0573. E. Candes, T.
Strohmer and V. Voroninski. PhaseLift: exact and stable signal recovery
from magnitude measurements via convex programming, arXiv: 1109.4499.
Yang Wang, Zhiqiang Xu, Phase Retrieval for Sparse Signals,
arXiv:1310.0873. Yaniv Plan, Roman Vershynin, One-bit compressed sensing
by linear program- ming, arXiv:1109.4299. Wenhui Liu, Da Gong, Zhiqiang
Xu, One-Bit Compressed Sensing by Greedy Algorithms, arXiv:1312.3418.

10-27 11万+
01-09 82

10-12 6557
09-27 5808
05-31 1554
08-15 2163
07-15 4086
08-25 4万+
02-15 1179
07-15