水平集和符号距离函数

水平集和符号距离函数

零水平集

定义: 对于一个函数 ϕ ( x ⃗ ) : R n → R \phi(\vec x):{\mathbf{R}^n}\rightarrow \mathbf{R} ϕ(x )RnR(其中 x ⃗ ∈ R n \vec x \in {\mathbf{R}^n} x Rn ,下同),取其值域为零部分对应的定义域:

Γ = { x ⃗ ∣ ϕ ( x ⃗ ) = 0 } (1) \Gamma = \{ \vec x|\phi (\vec x) = 0\} \tag{1} Γ={x ϕ(x )=0}(1)

这里, Γ ∈ R n − 1 \Gamma \in {\mathbf{R}^{n-1}} ΓRn1 称为函数 ϕ \phi ϕ 的零水平集,反之, ϕ \phi ϕ 称为 Γ \Gamma Γ 的一个水平集函数。
通俗地说,函数的水平集是这个函数在某个高度上所有点的一个集合。

函数的零水平集有一些良好的性质,在如下图所示的曲面演化问题中,

在这里插入图片描述

n ⃗ \vec n n 为外法线向量, Γ \Gamma Γ 为演化曲线。我们不妨假设有函数 ϕ ( x ⃗ ) \phi(\vec x) ϕ(x ),它的零水平集为 Γ \Gamma Γ ,并且满足,

{ ϕ > 0 x ⃗ ∈ Γ i n ϕ < 0 x ⃗ ∈ Γ o u t (inandout) \left\{ \begin{aligned}\tag{inandout} &\phi > 0&&\vec x \in {\Gamma_{in}}\\ &\phi < 0&&\vec x \in {\Gamma_{out}}\\ \end{aligned} \right. {ϕ>0ϕ<0x Γinx Γout(inandout)

这里, Γ i n \Gamma_{in} Γin 表示 Γ \Gamma Γ 内部, Γ o u t \Gamma_{out} Γout 表示 Γ \Gamma Γ 外部。那么,对于任意的 x ⃗ ∈ Γ \vec x \in \Gamma x Γ ϕ \phi ϕ 有如下两个性质:

  • 性质一: ∇ ϕ ∣ ∇ ϕ ∣ = − n ⃗ (zlsp1) \tag{zlsp1} \frac{{\nabla \phi }}{{|\nabla \phi |}} = - \vec n ϕϕ=n (zlsp1)
    Proof. 如图所示,设 s ⃗ \vec s s 为零水平集 Γ \Gamma Γ 的切线方向, ϕ \phi ϕ Γ \Gamma Γ 沿切线方向上恒为零,故有:
    ∂ ϕ ∂ s = 0 \frac{{\partial \phi }}{{\partial s}} = 0 sϕ=0 由链式法则,可得:
    ϕ s ( x ⃗ ) = ∇ ϕ ⋅ x ⃗ s = 0 {\phi _s}(\vec x) = \nabla \phi \cdot {{\vec x}_s} = 0 ϕs(x )=ϕx s=0
    由此可知 ∇ ϕ \nabla \phi ϕ 与切向垂直,对 ∇ ϕ \nabla \phi ϕ 进行单位化并根据 ϕ \phi ϕ 内正外负的情况取符号,即得:
    ∇ ϕ ∣ ∇ ϕ ∣ = − n ⃗ \frac{{\nabla \phi }}{{|\nabla \phi |}} = - \vec n ϕϕ=n

  • 性质二: d i v ( ∇ ϕ ∣ ∇ ϕ ∣ ) = − trace ( ∇ ⋅ n ⃗ ) = − κ (zlsp2) \tag{zlsp2} {\rm{div}}(\frac{{\nabla \phi }}{{|\nabla \phi |}}) = -\text{trace} (\nabla\cdot \vec n) = -\kappa div(ϕϕ)=trace(n )=κ(zlsp2)
    Proof.
    ϕ s \phi_s ϕs Γ \Gamma Γ 沿切线方向上恒为零,故有: ϕ s s = 0 \phi_{ss}=0 ϕss=0 ,由链式法则,可知:
    ϕ s s ( x ⃗ ) = ∂ ∂ s ( ∇ ϕ ⋅ x ⃗ s ) = ∂ ∂ s ∇ ϕ ⋅ x ⃗ s + ∇ ϕ ⋅ x ⃗ s s {\phi _{ss}}(\vec x) = \frac{\partial }{{\partial s}}(\nabla \phi \cdot {{\vec x}_s}) = \frac{\partial }{{\partial s}}\nabla \phi \cdot {{\vec x}_s} + \nabla \phi \cdot {{\vec x}_{ss}} ϕss(x )=s(ϕx s)=sϕx s+ϕx ss
    由曲率的定义,有 x ⃗ s s = − κ n ⃗ \vec x_{ss}=-\kappa \vec n x ss=κn ,由上一个性质,有 ∇ ϕ ⋅ n ⃗ = − ∣ ∇ ϕ ∣ \nabla \phi \cdot \vec n = -|\nabla \phi| ϕn =ϕ ,代入上式,移项,可得:
    − κ ∣ ∇ ϕ ∣ = ∂ ∂ s ∇ ϕ ⋅ x ⃗ s - \kappa |\nabla \phi | = \frac{\partial }{{\partial s}}\nabla \phi \cdot {{\vec x}_s} κϕ=sϕx s
    将其左端展开,即证。

性质二本质上就是曲率的定义。因为曲率是 Weingarten Map ∇ n ⃗ = ∇ 2 d \nabla \vec n=\nabla^2 d n =2d 对角线上的元素。这里的 d d d 提前说了,它表示距离函数。另外,Weingarten Map 和 n ⃗ \vec n n 也是垂直的,即 ∇ 2 d ∇ d = 0 \nabla^2 d \nabla d=0 2dd=0

符号距离函数

符号距离函数 (Signed Distance Function) 是一个水平集函数,它给定了点到某条曲线上距离这个点最近点的距离,也可以说是这个点离曲线的最短距离,它在数学上可以这样表述:

在某区域上给定一条曲线 Γ \Gamma Γ ,定义与之相关的函数:
d ( Γ , x ⃗ ) = { min ⁡ y ⃗ ∈ Γ ∣ x ⃗ − y ⃗ ∣ x ⃗ ∈ Γ i n − min ⁡ y ⃗ ∈ Γ ∣ x ⃗ − y ⃗ ∣ x ⃗ ∉ Γ i n d(\Gamma,\vec x)= \left\{ \begin{aligned} \mathop {\min }\limits_{\vec y \in \Gamma } |\vec x - \vec y| & & &\vec x \in \Gamma_{in}\\ -\mathop {\min }\limits_{\vec y \in \Gamma } |\vec x - \vec y|& & &\vec x \notin \Gamma_{in}\\ \end{aligned} \right. d(Γ,x )=y Γminx y y Γminx y x Γinx /Γin
Γ i n \Gamma_{in} Γin Γ \Gamma Γ 内部,二维情况下, x ⃗ ∈ R 2 , y ⃗ ∈ R 2 \vec x \in \mathbf{R}^2 \text{,} \vec y\in \mathbf{R}^2 x R2y R2 ,那么称 d d d 为一个符号距离函数,下面把符号距离函数也简称为 SDF 。

符号距离函数有很多良好的性质,包括在边界上的几乎处处可微,关于凸区域的凸性,以及不同符号距离函数之间和差运算的一些性质,作为重点,列以下两条关于单位法向量和平均曲率的性质:

  • 对于任意的 x ⃗ ∈ Γ \vec x \in \Gamma x Γ ∣ ∇ d ∣ = 1 (sdfp1) \tag{sdfp1} |\nabla d| = 1 d=1(sdfp1) 这也是符号距离函数的一个判断条件,它是充要的。

  • 对于任意的 x ⃗ ∈ Γ \vec x \in \Gamma x Γ ,由水平集函数的性质可得:
    ∇ d = − n ⃗ ⋅ ∣ ∇ d ∣ = − n ⃗ Δ d = − κ ∣ ∇ d ∣ = − κ (sdfp2) \tag{sdfp2} \begin{aligned} &\nabla d = - \vec n \cdot |\nabla d|=-\vec n &\\ &\Delta d = - \kappa |\nabla d| = - \kappa & \end{aligned} d=n d=n Δd=κd=κ(sdfp2)

第二条的拉普拉斯算子 Δ d \Delta d Δd,本质上就是 d d d 的 Hessian ∇ 2 d \nabla^2 d 2d 对角线上的元素,即曲率。

  • 7
    点赞
  • 31
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
### 回答1: 水平集函数是图形学中的一种基本概念,用于表示图形的形状。下面是一种用 Python 实现水平集函数的代码示例: ``` import matplotlib.pyplot as plt import numpy as np def level_set(x, y, f, level): """ 水平集函数 :param x: x 坐标 :param y: y 坐标 :param f: 函数 :param level: 水平线高度 :return: None """ X, Y = np.meshgrid(x, y) Z = f(X, Y) plt.contour(X, Y, Z, [level]) plt.show() def f(x, y): """ 示例函数 :param x: x 坐标 :param y: y 坐标 :return: z 坐标 """ return x**2 + y**2 x = np.linspace(-10, 10, 500) y = np.linspace(-10, 10, 500) level_set(x, y, f, 10) ``` 运行这段代码后,将会生成一幅图,其中,函数 `f(x, y) = x**2 + y**2` 的水平集函数在高度为 10 的位置被绘制出来。 ### 回答2: 水平集函数是一种常用于图像分割和物体识别的方法,通过将图像中的像素分成不同的区域,可以将不同的对象或背景分离开来。下面是一个简单的代码实现水平集函数的例子。 首先,我们需要导入相关的库,例如numpy和opencv。 import numpy as np import cv2 接下来,我们定义水平集函数的主要函数,以及一些辅助函数。 def level_set(image, initial_level_set, iterations=100, epsilon=1e-5): # 根据公式进行水平集函数的迭代计算 phi = initial_level_set for _ in range(iterations): # 计算图像梯度 grad_x = cv2.Sobel(phi, cv2.CV_64F, 1, 0, ksize=3) grad_y = cv2.Sobel(phi, cv2.CV_64F, 0, 1, ksize=3) norm_grad = np.sqrt(grad_x**2 + grad_y**2) # 计算曲率 curvature = cv2.Laplacian(phi, cv2.CV_64F, ksize=3) # 根据公式更新水平集函数 dt = 1.0 / (np.max(np.abs(norm_grad)) + epsilon) phi += dt * norm_grad * curvature return phi 定义辅助函数用于读取和显示图像。 def load_image(file_path): return cv2.imread(file_path, 0) def display_image(image): cv2.imshow('Image', image) cv2.waitKey(0) cv2.destroyAllWindows() 最后,我们使用一个简单的示例来演示水平集函数的应用。 def main(): # 读取图像 image = load_image('example.jpg') # 创建初始水平集函数 initial_level_set = np.zeros_like(image, dtype=np.float64) initial_level_set[100:200, 100:200] = -1 initial_level_set[200:300, 200:300] = 1 # 使用水平集函数进行图像分割 segmented_image = level_set(image, initial_level_set) # 显示分割结果 display_image(segmented_image) if __name__ == '__main__': main() 在这个示例中,我们首先读取了一张名为'example.jpg'的图像,并创建了一个初始的水平集函数。然后,我们使用水平集函数进行图像分割,最后将结果显示出来。 这只是一个简单的代码实现水平集函数的例子,实际应用中可能需要根据具体需求进行调整和优化。 ### 回答3: 水平集函数是数学中的一个概念,用于描述一个二维或三维图像的边界。在计算机图像处理中,我们可以通过编写代码实现水平集函数的计算。 代码实现水平集函数的方法有很多种,以下是一种较为简单的实现示例: ``` import numpy as np def levelset_function(image, threshold): # 将灰度图像转化为二值图像 binary_image = np.zeros_like(image) binary_image[image > threshold] = 1 # 定义水平集函数 levelset = np.zeros_like(image) # 遍历图像的像素点 for i in range(image.shape[0]): for j in range(image.shape[1]): if binary_image[i, j] == 0: levelset[i, j] = -1 else: levelset[i, j] = 1 return levelset ``` 以上代码使用了NumPy库来处理图像数据。首先,我们将图像转化为二值图像,根据设定的阈值将灰度值大于阈值的像素点标记为1,其余像素点标记为0。然后我们遍历图像的每个像素点,如果该点的像素值为0,则在水平集函数中将对应位置的数值设为-1,否则设为1。最终得到的水平集函数可以表示图像的边界。 需要注意的是,以上只是一种简单的实现方法,实际的水平集函数计算可能需要根据具体的应用场景进行相应的修改和优化。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陆嵩

有打赏才有动力,你懂的。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值