数表题解

题目

题目链接

初步转化

f ( n ) f(n) f(n)表示n的所有因数和

如果 d ∣ i 并 且 d ∣ j d|i 并且 d|j didj,那么 d ∣ g c d ( i , j ) d|gcd(i,j) dgcd(i,j)

那么对于每一个询问,答案为: ∑ i = 1 n ∑ j = 1 m [ f ( g c d ( i , j ) ) < = a ] ∗ f ( g c d ( i , j ) ) \sum_{i=1}^{n}\sum_{j=1}^{m}{[f(gcd(i,j))<=a]*f(gcd(i,j))} i=1nj=1m[f(gcd(i,j))<=a]f(gcd(i,j))

所以问题就转化为了回答上述表达式的多组询问

分析

莫比乌斯反演

下面开始用莫比乌斯反演来推式子:

∑ i = 1 n ∑ j = 1 m [ f ( g c d ( i , j ) ) < = a ] ∗ f ( g c d ( i , j ) ) \sum_{i=1}^{n}\sum_{j=1}^{m}{[f(gcd(i,j))<=a]*f(gcd(i,j))} i=1nj=1m[f(gcd(i,j))<=a]f(gcd(i,j))

= ∑ d = 1 n [ f ( d ) < = a ] ∑ d ∣ i n ∑ d ∣ j m [ g c d ( i , j ) = d ] d =\sum_{d=1}^{n}{[f(d)<=a]}\sum_{d|i}^{n}\sum_{d|j}^{m}[gcd(i,j)=d]d =d=1n[f(d)<=a]dindjm[gcd(i,j)=d]d

= ∑ d = 1 n [ f ( d ) < = a ] ∑ i = 1 n / d ∑ j = 1 m ∑ k ∣ g c d ( i , j ) μ ( k ) d =\sum_{d=1}^{n}[f(d)<=a]\sum_{i=1}^{n/d}\sum_{j=1}^{m}\sum_{k|gcd(i,j)}{μ(k)}d =d=1n[f(d)<=a]i=1n/dj=1mkgcd(i,j)μ(k)d

= ∑ d = 1 n [ f ( d ) < = a ] d ∑ k = 1 n / d μ ( k ) ∑ k ∣ i n / d ∑ k ∣ j m / d 1 =\sum_{d=1}^{n}[f(d)<=a]d\sum_{k=1}^{n/d}{μ(k)}\sum_{k|i}^{n/d}\sum_{k|j}^{m/d}1 =d=1n[f(d)<=a]dk=1n/dμ(k)kin/dkjm/d1

最后两个和式把他变成除法,ij同除k

= ∑ d = 1 n [ f ( d ) < = a ] d ∑ k = 1 n / d μ ( k ) ∗ n / k d ∗ m / k d =\sum_{d=1}^{n}[f(d)<=a]d\sum_{k=1}^{n/d}{μ(k)}*{n/kd}*{m/kd} =d=1n[f(d)<=a]dk=1n/dμ(k)n/kdm/kd

令T=kd

= ∑ T = 1 n n / T ∗ m / T ∑ d ∣ T μ ( T / d ) ∗ f ( d ) [ f ( d ) < = a ] =\sum_{T=1}^{n}{n/T}*{m/T}\sum_{d|T}{μ(T/d)*f(d)[f(d)<=a]} =T=1nn/Tm/TdTμ(T/d)f(d)[f(d)<=a]

前面一部分可以用整除分块

后面一部分 ∑ d ∣ T μ ( T / d ) ∗ f ( d ) [ f ( d ) < = a ] \sum_{d|T}{μ(T/d)*f(d)[f(d)<=a]} dTμ(T/d)f(d)[f(d)<=a]

是f和μ函数的迪利克雷卷积外加一个限制条件

第一部分通过莫比乌斯反演转化式子就完成了

积性函数处理

现在我们难以处理的是a这个限制条件。

∑ d ∣ T μ ( T / d ) ∗ f ( d ) [ f ( d ) < = a ] \sum_{d|T}{μ(T/d)*f(d)[f(d)<=a]} dTμ(T/d)f(d)[f(d)<=a]这个函数为G函数

大体思路:那么我们可以考虑离线处理答案,按照询问的a从小到大排序,这样每次a只会变大,那么把没处理的G函数加进去就可以了。

莫比乌斯函数我们可以线性预处理

f函数可以 o ( n l o g n ) o(nlogn) o(nlogn)预处理(其实有一种 o ( n ) o(n) o(n)的方法)

a的条件变大了之后,假设 x 1 x_1 x1是新增进去的,那么就把 μ ( T / x 1 ) ∗ f ( x 1 ) μ(T/x_1)*f(x_1) μ(T/x1)f(x1)加到G(T)里面,其中T是 x 1 x_1 x1的倍数。

那么现在我们需要一个数据结构来支持:单点修改+前缀查询——树状数组

代码

这样的话思路就理清了:对于询问:按a排序,预处理两个函数,在a变大的同时修改树状数组;树状数组记录G函数。统计答案然后输出就好了

下附AC代码:

#include<bits/stdc++.h>
using namespace std;
long long read(){
	char s;
	long long x=0,f=1;
	s=getchar();
	while(s<'0'||s>'9'){
		if(s=='-')f=-1;
		s=getchar();
	}
	while(s>='0'&&s<='9'){
		x*=10;
		x+=s-'0';
		s=getchar();
	}
	return x*f;
}
const long long mod=(long long)1<<31;
const int M=2e4+5;
const int N=1e5+5;
struct Q{
	long long n,m,a;
	int id;
}q[M],di[N];
bool operator<(Q a,Q b){
	return a.a<b.a;
}
bool flag[N];
long long mu[N],d[N];//莫比乌斯函数、约数个数函数
int p[N],pn; 
void init(int n){
	mu[1]=1;//mu线性筛  d nlogn筛 
	for(int i=2;i<=n;i++){
		if(!flag[i]){
			mu[i]=-1;
			p[pn++]=i;
		}
		for(int j=0;j<pn,p[j]*i<=n;j++){
			flag[p[j]*i]=1;
			if(i%p[j]==0){
				mu[i*p[j]]=0;
				break;
			}
			else{
				mu[i*p[j]]=-mu[i];
			}
		}
	}
	for(int i=1;i<=n;i++){
		for(int j=i;j<=n;j+=i){
			d[j]+=i;
		}
	}
	for(int i=1;i<=n;i++){
		di[i].id=i;
		di[i].a=d[i];
	}
	sort(di+1,di+1+n);
}
struct tree{
	long long c[N];//记录G函数 即mu和d的卷积函数+d<=a的限制条件 
	void clear(){memset(c,0,sizeof(c));}
	int lowbit(int x){return x&(-x);}
	void modify(int pos,long long x){
		for(int i=pos;i<=N-5;i+=lowbit(i)){
			c[i]+=x;
		}
	}
	long long query(int pos){
		long long rec=0;
		for(int i=pos;i>0;i-=lowbit(i)){
			rec+=c[i];
		}
		return rec;
	}
}t;
long long rec[N];
void add(int x){
	for(int i=x;i<=N-5;i+=x){
		t.modify(i,mu[i/x]*d[x]);
	}
}
long long solve(int n,int m){
	long long ans=0;
	if(n>m)swap(n,m);
	for(int l=1,r;l<=n;l=r+1){
		r=min(m/(m/l),n/(n/l));
		ans+=(long long)(t.query(r)-t.query(l-1))*(n/l)*(m/l);
	}
	return ans%mod;
}
int main(){
	int T=read();
	for(int i=1;i<=T;i++){
		q[i].n=read(),q[i].m=read(),q[i].a=read();
		q[i].id=i;
	}
	sort(q+1,q+1+T);
	init(N-5);
	t.clear();
	int id=0;
	for(int i=1;i<=T;i++){
		while(di[id+1].a<=q[i].a&&id+1<=N-5){
			id+=1;
			add(di[id].id);
		}
		rec[q[i].id]=solve(q[i].n,q[i].m);
	}
	for(int i=1;i<=T;i++){
		long long ans=rec[i]%mod;
		ans+=mod;
		ans%=mod;
		printf("%lld\n",ans);
	}
} 

心得体会:

离线处理,学会借助数据结构进行预处理

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值