Hadoop源代码分析(MapReduce概论)

2009-02-21

Hadoop源代码分析(MapReduce概论)

大家都熟悉文件系统,在对HDFS进行分析前,我们并没有花很多的时间去介绍HDFS的背景,毕竟大家对文件系统的还是有一定的理解的,而且也有很好的文档。在分析Hadoop的MapReduce部分前,我们还是先了解系统是如何工作的,然后再进入我们的分析部分。下面的图来自http://horicky.blogspot.com/2008/11/hadoop-mapreduce-implementation.html,是我看到的讲MapReduce最好的图。



 

以Hadoop带的wordcount为例子(下面是启动行):

hadoop jar hadoop-0.19.0-examples.jar wordcount /usr/input /usr/output

用户提交一个任务以后,该任务由JobTracker协调,先执行Map阶段(图中M1,M2和M3),然后执行Reduce阶段(图中R1和R2)。Map阶段和Reduce阶段动作都受TaskTracker监控,并运行在独立于TaskTracker的Java虚拟机中。

我们的输入和输出都是HDFS上的目录(如上图所示)。输入由InputFormat接口描述,它的实现如ASCII文件,JDBC数据库等,分别处理对于的数据源,并提供了数据的一些特征。通过InputFormat实现,可以获取InputSplit接口的实现,这个实现用于对数据进行划分(图中的splite1到splite5,就是划分以后的结果),同时从InputFormat也可以获取RecordReader接口的实现,并从输入中生成<k,v>对。有了<k,v>,就可以开始做map操作了。

map操作通过context.collect(最终通过OutputCollector. collect)将结果写到context中。当Mapper的输出被收集后,它们会被Partitioner类以指定的方式区分地写出到输出文件里。我们可以为Mapper提供Combiner,在Mapper输出它的<k,v>时,键值对不会被马上写到输出里,他们会被收集在list里(一个key值一个list),当写入一定数量的键值对时,这部分缓冲会被Combiner中进行合并,然后再输出到Partitioner中(图中M1的黄颜色部分对应着Combiner和Partitioner)。

Map的动作做完以后,进入Reduce阶段。这个阶段分3个步骤:混洗(Shuffle),排序(sort)和reduce。

混洗阶段,Hadoop的MapReduce框架会根据Map结果中的key,将相关的结果传输到某一个Reducer上(多个Mapper产生的同一个key的中间结果分布在不同的机器上,这一步结束后,他们传输都到了处理这个key的Reducer的机器上)。这个步骤中的文件传输使用了HTTP协议。

排序和混洗是一块进行的,这个阶段将来自不同Mapper具有相同key值的<key,value>对合并到一起。

Reduce阶段,上面通过Shuffle和sort后得到的<key, (list of values)>会送到Reducer. reduce方法中处理,输出的结果通过OutputFormat,输出到DFS中。

2009-02-25

Hadoop源代码分析org.apache.hadoop.mapreduce)

有了前一节的分析,我们来看一下具体的接口,它们都处于包org.apache.hadoop.mapreduce中。



 

上面的图中,类可以分为4种。右上角的是从Writeable继承的,和Counter(还有CounterGroup和Counters,也在这个包中,并没有出现在上面的图里)和ID相关的类,它们保持MapReduce过程中需要的一些计数器和标识;中间大部分是和Context相关的*Context类,它为Mapper和Reducer提供了相关的上下文;关于Map和Reduce,对应的类是Mapper,Reducer和描述他们的Job(在Hadoop 中一次计算任务称之为一个job,下面的分析中,中文为“作业”,相应的task我们称为“任务”);图中其他类是配合Mapper和Reduce工作的一些辅助类。

如果你熟悉HTTPServlet, 那就能很轻松地理解Hadoop采用的结构,把整个Hadoop看作是容器,那么Mapper和Reduce就是容器里的组件,*Context保存了组件的一些配置信息,同时也是和容器通信的机制。

和ID相关的类我们就不再讨论了。我们先看JobContext,它位于*Context继承树的最上方,为Job提供一些只读的信息,如Job的ID,名称等。下面的信息是MapReduce过程中一些较关键的定制信息:

(来自http://www.ibm.com/developerworks/cn/opensource/os-cn-hadoop2/index.html):

参数

作用

缺省值

其它实现

InputFormat 

将输入的数据集切割成小数据集 InputSplits, 每一个 InputSplit 将由一个 Mapper 负责处理。此外 InputFormat 中还提供一个 RecordReader 的实现将一个 InputSplit 解析成 <key,value> 对提供给 map 函数。

TextInputFormat
(针对文本文件,按行将文本文件切割成 InputSplits, 并用 LineRecordReader  InputSplit 解析成 <key,value> 对,key 是行在文件中的位置,value 是文件中的一行

SequenceFileInputFormat 

OutputFormat 

提供一个 RecordWriter 的实现,负责输出最终结果

TextOutputFormat
( LineRecordWriter 将最终结果写成纯文件文件,每个 <key,value> 对一行,key  value 之间用 tab 分隔

SequenceFileOutputFormat

OutputKeyClass 

输出的最终结果中 key 的类型

LongWritable 

 

OutputValueClass 

输出的最终结果中 value 的类型

Text 

 

MapperClass 

Mapper 类,实现 map 函数,完成输入的 <key,value> 到中间结果的映射

IdentityMapper
(将输入的 <key,value> 原封不动的输出为中间结果

LongSumReducer,
LogRegexMapper,
InverseMapper 

CombinerClass 

实现 combine 函数,将中间结果中的重复 key 做合并

null
(不对中间结果中的重复 key 做合并

 

ReducerClass 

Reducer 类,实现 reduce 函数,对中间结果做合并,形成最终结果

IdentityReducer
(将中间结果直接输出为最终结果

AccumulatingReducer, LongSumReducer 

InputPath 

设定 job 的输入目录, job 运行时会处理输入目录下的所有文件

null 

 

OutputPath 

设定 job 的输出目录,job 的最终结果会写入输出目录下

null 

 

MapOutputKeyClass 

设定 map 函数输出的中间结果中 key 的类型

如果用户没有设定的话,使用 OutputKeyClass 

 

MapOutputValueClass 

设定 map 函数输出的中间结果中 value 的类型

如果用户没有设定的话,使用 OutputValuesClass 

 

OutputKeyComparator 

对结果中的 key 进行排序时的使用的比较器

WritableComparable 

 

PartitionerClass 

对中间结果的 key 排序后,用此 Partition 函数将其划分为R,每份由一个 Reducer 负责处理。

HashPartitioner
(使用 Hash 函数做 partition) 

KeyFieldBasedPartitioner PipesPartitioner 

Job继承自JobContext,提供了一系列的set方法,用于设置Job的一些属性(Job更新属性,JobContext读属性),同时,Job还提供了一些对Job进行控制的方法,如下:

l           mapProgress:map的进度(0—1.0);

l           reduceProgress:reduce的进度(0—1.0);

l           isComplete:作业是否已经完成;

l           isSuccessful:作业是否成功;

l           killJob:结束一个在运行中的作业;

l           getTaskCompletionEvents:得到任务完成的应答(成功/失败);

l           killTask:结束某一个任务;

2009-02-25

Hadoop源代码分析(包mapreduce.lib.input)

接下来我们按照MapReduce过程中数据流动的顺序,来分解org.apache.hadoop.mapreduce.lib.*的相关内容,并介绍对应的基类的功能。首先是input部分,它实现了MapReduce的数据输入部分。类图如下:



 

类图的右上角是InputFormat,它描述了一个MapReduce Job的输入,通过InputFormat,Hadoop可以:

l           检查MapReduce输入数据的正确性;

l           将输入数据切分为逻辑块InputSplit,这些块会分配给Mapper;

l           提供一个RecordReader实现,Mapper用该实现从InputSplit中读取输入的<K,V>对。

在org.apache.hadoop.mapreduce.lib.input中,Hadoop为所有基于文件的InputFormat提供了一个虚基类FileInputFormat。下面几个参数可以用于配置FileInputFormat:

l           mapred.input.pathFilter.class:输入文件过滤器,通过过滤器的文件才会加入InputFormat;

l           mapred.min.split.size:最小的划分大小;

l           mapred.max.split.size:最大的划分大小;

l           mapred.input.dir:输入路径,用逗号做分割。

类中比较重要的方法有:

  protected List<FileStatus> listStatus(Configuration job)

递归获取输入数据目录中的所有文件(包括文件信息),输入的job是系统运行的配置Configuration,包含了上面我们提到的参数。

  public List<InputSplit> getSplits(JobContext context)

将输入划分为InputSplit,包含两个循环,第一个循环处理所有的文件,对于每一个文件,根据输入的划分最大/最小值,循环得到文件上的划分。注意,划分不会跨越文件。

FileInputFormat没有实现InputFormat的createRecordReader方法。

FileInputFormat有两个子类,SequenceFileInputFormat是Hadoop定义的一种二进制形式存放的键/值文件(参考http://hadoop.apache.org/core/docs/current/api/org/apache/hadoop/io/SequenceFile.html),它有自己定义的文件布局。由于它有特殊的扩展名,所以SequenceFileInputFormat重载了listStatus,同时,它实现了createRecordReader,返回一个SequenceFileRecordReader对象。TextInputFormat处理的是文本文件,createRecordReader返回的是LineRecordReader的实例。这两个类都没有重载FileInputFormat的getSplits方法,那么,在他们对于的RecordReader中,必须考虑FileInputFormat对输入的划分方式。

FileInputFormat的getSplits,返回的是FileSplit。这是一个很简单的类,包含的属性(文件名,起始偏移量,划分的长度和可能的目标机器)已经足以说明这个类的功能。

RecordReader用于在划分中读取<Key,Value>对。RecordReader有五个虚方法,分别是:

l           initialize:初始化,输入参数包括该Reader工作的数据划分InputSplit和Job的上下文context;

l           nextKey:得到输入的下一个Key,如果数据划分已经没有新的记录,返回空;

l           nextValue:得到Key对应的Value,必须在调用nextKey后调用;

l           getProgress:得到现在的进度;

l           close,来自java.io的Closeable接口,用于清理RecordReader。

我们以LineRecordReader为例,来分析RecordReader的构成。前面我们已经分析过FileInputFormat对文件的划分了,划分完的Split包括了文件名,起始偏移量,划分的长度。由于文件是文本文件,LineRecordReader的初始化方法initialize会创建一个基于行的读取对象LineReader(定义在org.apache.hadoop.util中,我们就不分析啦),然后跳过输入的最开始的部分(只在Split的起始偏移量不为0的情况下进行,这时最开始的部分可能是上一个Split的最后一行的一部分)。nextKey的处理很简单,它使用当前的偏移量作为Key,nextValue当然就是偏移量开始的那一行了(如果行很长,可能出现截断)。进度getProgress和close都很简单。

2009-02-25

Hadoop源代码分析(包mapreduce.lib.map)

Hadoop的MapReduce框架中,Map动作通过Mapper类来抽象。一般来说,我们会实现自己特殊的Mapper,并注册到系统中,执行时,我们的Mapper会被MapReduce框架调用。Mapper类很简单,包括一个内部类和四个方法,静态结构图如下:


 

内部类Context继承自MapContext,并没有引入任何新的方法。

Mapper的四个方法是setup,map,cleanup和run。其中,setup和cleanup用于管理Mapper生命周期中的资源,setup在完成Mapper构造,即将开始执行map动作前调用,cleanup则在所有的map动作完成后被调用。方法map用于对一次输入的key/value对进行map动作。run方法执行了上面描述的过程,它调用setup,让后迭代所有的key/value对,进行map,最后调用cleanup。

org.apache.hadoop.mapreduce.lib.map中实现了Mapper的三个子类,分别是InverseMapper(将输入<key, value> map为输出<value, key>),MultithreadedMapper(多线程执行map方法)和TokenCounterMapper(对输入的value分解为token并计数)。其中最复杂的是MultithreadedMapper,我们就以它为例,来分析Mapper的实现。

MultithreadedMapper会启动多个线程执行另一个Mapper的map方法,它会启动mapred.map.multithreadedrunner.threads(配置项)个线程执行Mapper:mapred.map.multithreadedrunner.class(配置项)。MultithreadedMapper重写了基类Mapper的run方法,启动N个线程(对应的类为MapRunner)执行mapred.map.multithreadedrunner.class(我们称为目标Mapper)的run方法(就是说,目标Mapper的setup和cleanup会被执行多次)。目标Mapper共享同一份InputSplit,这就意味着,对InputSplit的数据读必须线程安全。为此,MultithreadedMapper引入了内部类SubMapRecordReader,SubMapRecordWriter,SubMapStatusReporter,分别继承自RecordReader,RecordWriter和StatusReporter,它们通过互斥访问MultithreadedMapper的Mapper.Context,实现了对同一份InputSplit的线程安全访问,为Mapper提供所需的Context。这些类的实现方法都很简单。

2009-02-26

Hadoop源代码分析(mapreduce.lib.partition/reduce/output)

Map的结果,会通过partition分发到Reducer上,Reducer做完Reduce操作后,通过OutputFormat,进行输出,下面我们就来分析参与这个过程的类。



 

Mapper的结果,可能送到可能的Combiner做合并,Combiner在系统中并没有自己的基类,而是用Reducer作为Combiner的基类,他们对外的功能是一样的,只是使用的位置和使用时的上下文不太一样而已。

Mapper最终处理的结果对<key, value>,是需要送到Reducer去合并的,合并的时候,有相同key的键/值对会送到同一个Reducer那,哪个key到哪个Reducer的分配过程,是由Partitioner规定的,它只有一个方法,输入是Map的结果对<key, value>和Reducer的数目,输出则是分配的Reducer(整数编号)。系统缺省的Partitioner是HashPartitioner,它以key的Hash值对Reducer的数目取模,得到对应的Reducer。

Reducer是所有用户定制Reducer类的基类,和Mapper类似,它也有setup,reduce,cleanup和run方法,其中setup和cleanup含义和Mapper相同,reduce是真正合并Mapper结果的地方,它的输入是key和这个key对应的所有value的一个迭代器,同时还包括Reducer的上下文。系统中定义了两个非常简单的Reducer,IntSumReducer和LongSumReducer,分别用于对整形/长整型的value求和。

Reduce的结果,通过Reducer.Context的方法collect输出到文件中,和输入类似,Hadoop引入了OutputFormat。OutputFormat依赖两个辅助接口:RecordWriter和OutputCommitter,来处理输出。RecordWriter提供了write方法,用于输出<key, value>和close方法,用于关闭对应的输出。OutputCommitter提供了一系列方法,用户通过实现这些方法,可以定制OutputFormat生存期某些阶段需要的特殊操作。我们在TaskInputOutputContext中讨论过这些方法(明显,TaskInputOutputContext是OutputFormat和Reducer间的桥梁)。

OutputFormat和RecordWriter分别对应着InputFormat和RecordReader,系统提供了空输出NullOutputFormat(什么结果都不输出,NullOutputFormat.RecordWriter只是示例,系统中没有定义),LazyOutputFormat(没在类图中出现,不分析),FilterOutputFormat(不分析)和基于文件FileOutputFormat的SequenceFileOutputFormat和TextOutputFormat输出。

基于文件的输出FileOutputFormat利用了一些配置项配合工作,包括mapred.output.compress:是否压缩;mapred.output.compression.codec:压缩方法;mapred.output.dir:输出路径;mapred.work.output.dir:输出工作路径。FileOutputFormat还依赖于FileOutputCommitter,通过FileOutputCommitter提供一些和Job,Task相关的临时文件管理功能。如FileOutputCommitter的setupJob,会在输出路径下创建一个名为_temporary的临时目录,cleanupJob则会删除这个目录。

SequenceFileOutputFormat输出和TextOutputFormat输出分别对应输入的SequenceFileInputFormat和TextInputFormat,我们就不再详细分析啦。

2009-03-06

Hadoop源代码分析(包hadoop.mapred中的MapReduce接口)

前面已经完成了对org.apache.hadoop.mapreduce的分析,这个包提供了Hadoop MapReduce部分的应用API,用于用户实现自己的MapReduce应用。但这些接口是给未来的MapReduce应用的,目前MapReduce框架还是使用老系统(参考补丁HADOOP-1230)。下面我们来分析org.apache.hadoop.mapred,首先还是从mapred的MapReduce框架开始分析,下面的类图(灰色部分为标记为@Deprecated的类/接口):



 

我们把包mapreduce的类图附在下面,对比一下,我们就会发现,org.apache.hadoop.mapred中的MapReduce API相对来说很简单,主要是少了和Context相关的类,那么,好多在mapreduce中通过context来完成的工作,就需要通过参数来传递,如Map中的输出,老版本是:

      output.collect(key, result);  // output’s type is: OutputCollector

新版本是:

      context.write(key, result);  // output’s type is: Context

它们分别使用OutputCollector和Mapper.Context来输出map的结果,显然,原有OutputCollector的新API中就不再需要。总体来说,老版本的API比较简单,MapReduce过程中关键的对象都有,但可扩展性不是很强。同时,老版中提供的辅助类也很多,我们前面分析的FileOutputFormat,也有对应的实现,我们就不再讨论了。

 

2009-03-10

Hadoop源代码分析(*IDs类和*Context类)

我们开始来分析Hadoop MapReduce的内部的运行机制。用户向Hadoop提交Job(作业),作业在JobTracker对象的控制下执行。Job被分解成为Task(任务),分发到集群中,在TaskTracker的控制下运行。Task包括MapTask和ReduceTask,是MapReduce的Map操作和Reduce操作执行的地方。这中任务分布的方法比较类似于HDFS中NameNode和DataNode的分工,NameNode对应的是JobTracker,DataNode对应的是TaskTracker。JobTracker,TaskTracker和MapReduce的客户端通过RPC通信,具体可以参考HDFS部分的分析。

我们先来分析一些辅助类,首先是和ID有关的类,ID的继承树如下:



 

这张图可以看出现在Hadoop的org.apache.hadoop.mapred向org.apache.hadoop.mapreduce迁移带来的一些问题,其中灰色是标注为@Deprecated的。ID携带一个整型,实现了WritableComparable接口,这表明它可以比较,而且可以被Hadoop的io机制串行化/解串行化(必须实现compareTo/readFields/write方法)。JobID是系统分配给作业的唯一标识符,它的toString结果是job_<jobtrackerID>_<jobNumber>。例子:job_200707121733_0003表明这是jobtracker 200707121733(利用jobtracker的开始时间作为ID)的第3号作业。

作业分成任务执行,任务号TaskID包含了它所属的作业ID,同时也有任务ID,同时还保持了这是否是一个Map任务(成员变量isMap)。任务号的字符串表示为task_<jobtrackerID>_<jobNumber>_[m|r]_<taskNumber>,如task_200707121733_0003_m_000005表示作业200707121733_0003的000005号任务,改任务是一个Map任务。

一个任务有可能有多个执行(错误恢复/消除Stragglers等),所以必须区分任务的多个执行,这是通过类TaskAttemptID来完成,它在任务号的基础上添加了尝试号。一个任务尝试号的例子是attempt_200707121733_0003_m_000005_0,它是任务task_200707121733_0003_m_000005的第0号尝试。

JVMId用于管理任务执行过程中的Java虚拟机,我们后面再讨论。

为了使Job和Task工作,Hadoop提供了一系列的上下文,这些上下文保存了Job和Task工作的信息。



 

处于继承树的最上方是org.apache.hadoop.mapreduce.JobContext,前面我们已经介绍过了,它提供了Job的一些只读属性,两个成员变量,一个保存了JobID,另一个类型为JobConf,JobContext中除了JobID外,其它的信息都保持在JobConf中。它定义了如下配置项:

l           mapreduce.inputformat.class:InputFormat的实现

l           mapreduce.map.class:Mapper的实现

l           mapreduce.combine.class: Reducer的实现

l           mapreduce.reduce.class:Reducer的实现

l           mapreduce.outputformat.class: OutputFormat的实现

l           mapreduce.partitioner.class: Partitioner的实现

同时,它提供方法,使得通过类名,利用Java反射提供的Class.forName方法,获得类对应的Class。org.apache.hadoop.mapred的JobContext对象比org.apache.hadoop.mapreduce.JobContext多了成员变量progress,用于获取进度信息,它类型为JobConf成员job指向mapreduce.JobContext对应的成员,没有添加任何新功能。

JobConf继承自Configuration,保持了MapReduce执行需要的一些配置信息,它管理着46个配置参数,包括上面mapreduce配置项对应的老版本形式,如mapreduce.map.class 对应mapred.mapper.class。这些配置项我们在使用到它们的时候再介绍。

org.apache.hadoop.mapreduce.JobContext的子类Job前面也已经介绍了,后面在讨论系统的动态行为时,再回来看它。

TaskAttemptContext用于任务的执行,它引入了标识任务执行的TaskAttemptID和任务状态status,并提供新的访问接口。org.apache.hadoop.mapred的TaskAttemptContext继承自mapreduce的对应版本,只是增加了记录进度的progress。

TaskInputOutputContext和它的子类都在包org.apache.hadoop.mapreduce中,前面已经分析过了,我们就不再罗嗦。

2009-03-10

Hadoop源代码分析(类TaskStatus)

我们先分析Task,这是一个规模比较大的类,类图如下。Task是一个虚类,它有两个子类,MapTask和ReduceTask,分别是Map任务和Reduce任务的抽象。



 

在分析Task相关类之前,我们来分析和ID,JobID,TaskID相关的类。

我们从TaskStatus开始来分析Task相关的类,TaskStatus,一看类名就知道它保持了Task的状态。从前面介绍MapReduce的过程中,我们了解到,MapReduce的过程可以处于下面6个阶段,它们定义在枚举:TaskStatus.Phase中,包括如下状态:

l           STARTING:开始

l           MAP:Map阶段

l           SHUFFLE:混洗阶段

l           SORT:排序阶段

l           REDUCE:Reduce阶段

l           CLEANUP:清理阶段

除了阶段,TaskStatus还维护任务的状态,很明显,如果不考虑异常,一次任务应该包括准备,运行和清理三个主要阶段,其实TaskStatus的正常流程和这个非常类似,同时,考虑到任务可能异常结束或被JobTracker杀死,系统还引入配合这两种异常情况的状态,其状态如下:



 

图中引入了复合状态,只是表明这些状态中包含的状态(如绿色的COMMIT_PENDING和SUCCESSED)可以转移到外面的状态(FAILED)。

(注:这张图是通过人肉逆向工程画出来的,在以后的分析过程中,这张图会根据我们对系统的深入了解而修改)

接下来我们来看TaskStatus的其它成员,它的完整类图如下,基本上是一些信息,没有复杂的操作。



 

它包含的主要状态信息有:taskid(对应的任务号),progress(处理情况),runState(运行状态,注意和任务阶段做区分),diagnosticInfo(诊断信息),stateString(运行状态),taskTracker(对应的taskTracker),startTime(开始时间),finishTime(结束时间),outputSize(输出大小),phase(任务阶段,注意和运行状态做区分),counters(相关的计数器),includeCounters(是否包含成员变量counters)nextRecordRange(处理的记录范围)。

TaskStatus有两个子类,分别是MapTaskStatus(没有添加任何新的成员变量)和ReduceTaskStatus。ReduceTaskStatus是Reduce任务的状态,它包含了新信息shuffleFinishTime(shuffle结束时间)和sortFinishTime(sort结束时间)。同时,获取Map结果出错时,对应的Map的TaskAttemptID会保存在failedFetchTasks中,等待上报。

最后我们看一下辅助类Counters/Counters.Counter/Counters.Group,它们保存了MapReduce过程中的一些统计计数器,Counters.Counter记录了一个计数器的<名字,显示名,值>,Counters.Group将相关的Counters.Counter聚合成组,并引入组名,组显示名。

2009-05-24

Hadoop源代码分析(IFile)

Mapper的输出,在发送到Reducer前是存放在本地文件系统的,IFile提供了对Mapper输出的管理。我们已经知道,Mapper的输出是<Key,Value>对,IFile以记录<key-len, value-len, key, value>的形式存放了这些数据。为了保存键值对的边界,很自然IFile需要保存key-len和value-len。

和IFile相关的类图如下:



 

其中,文件流形式的输入和输出是由IFIleInputStream和IFIleOutputStream抽象。以记录形式的读/写操作由IFile.Reader/IFile.Writer提供,IFile.InMemoryReader用于读取存在于内存中的IFile文件格式数据。

我们以输出为例,来分析这部分的实现。首先是下图的和序列化反序列化相关的Serialization/Deserializer,这部分的code是在包org.apache.hadoop.io.serializer。序列化由Serializer抽象,通过Serializer的实现,用户可以利用serialize方法把对象序列化到通过open方法打开的输出流里。Deserializer提供的是相反的过程,对应的方法是deserialize。hadoop.io.serializer中还实现了配合工作的Serialization和对应的工厂SerializationFactory。两个具体的实现是WritableSerialization和JavaSerialization,分别对应了Writeble的序列化反序列化和Java本身带的序列化反序列化。



 

有了Serializer/Deserializer,我们来分析IFile.Writer。Writer的构造函数是:

    public Writer(Configuration conf, FSDataOutputStream out, 

        Class<K> keyClass, Class<V> valueClass,

        CompressionCodec codec, Counters.Counter writesCounter)

conf,配置参数,out是Writer的输出,keyClass 和valueClass 是输出的Kay,Value的class属性,codec是对输出进行压缩的方法,参数writesCounter用于对输出字节数进行统计的Counters.Counter。通过这些参数,我们可以构造我们使用的支持压缩功能的输出流(类成员out,类成员rawOut保存了构造函数传入的out),相关的计数器,还有就是Kay,Value的Serializer方法。

Writer最主要的方法是append方法(居然不是write方法,呵呵),有两种形式:

public void append(K key, V value) throws IOException {

public void append(DataInputBuffer key, DataInputBuffer value)

append(K key, V value)的主要过程是检查参数,然后将key和value序列化到DataOutputBuffer中,并获取序列化后的长度,最后把长度(2个)和DataOutputBuffer中的结果写到输出,并复位DataOutputBuffer和计数。append(DataInputBuffer key, DataInputBuffer value)处理过程也比较类似,就不再分析了。

close方法中需要注意的是,我们需要标记文件尾,或者是流结束。目前是通过写2个值为EOF_MARKER的长度来做标记。

IFileOutputStream是用于配合Writer的输出流,它会在IFiles的最后添加校验数据。当Writer调用IFileOutputStream的write操作时,IFileOutputStream计算并保持校验和,流被close的时候,校验结果会写到对应文件的文件尾。实际上存放在磁盘上的文件是一系列的<key-len, value-len, key, value>记录和校验结果。

 Reader的相关过程,我们就不再分析了。

2009-05-24

Hadoop源代码分析(Task的内部类和辅助类)

从前面的图中,我们可以发现Task有很多内部类,并拥有大量类成员变量,这些类配合Task完成相关的工作,如下图。



 

MapOutputFile管理着Mapper的输出文件,它提供了一系列get方法,用于获取Mapper需要的各种文件,这些文件都存放在一个目录下面。

我们假设传入MapOutputFile的JobID为job_200707121733_0003,TaskID为task_200707121733_0003_m_000005。MapOutputFile的根为
{mapred.local.dir}/taskTracker/jobcache/{jobid}/{taskid}/output

在下面的讨论中,我们把上面的路径记为{MapOutputFileRoot}

以上面JogID和TaskID为例,我们有:
{mapred.local.dir}/taskTracker/jobcache/job_200707121733_0003/task_200707121733_0003_m_000005/output

需要注意的是,{mapred.local.dir}可以包含一系列的路径,那么,Hadoop会在这些根路径下找一个满足要求的目录,建立所需的文件。MapOutputFile的方法有两种,结尾带ForWrite和不带ForWrite,带ForWrite用于创建文件,它需要一个文件大小作为参数,用于检查磁盘空间。不带ForWrite用于获取以建立的文件。

getOutputFile:文件名为{MapOutputFileRoot}/file.out; 

getOutputIndexFile:文件名为{MapOutputFileRoot}/file.out.index

getSpillFile:文件名为{MapOutputFileRoot}/spill{spillNumber}.out

getSpillIndexFile:文件名为{MapOutputFileRoot}/spill{spillNumber}.out.index

以上四个方法用于Task子类MapTask中;

getInputFile:文件名为{MapOutputFileRoot}/map_{mapId}.out

用于ReduceTask中。我们到使用到他们的地方再介绍相应的应用场景。

 

介绍完临时文件管理以后,我们来看Task.CombineOutputCollector,它继承自org.apache.hadoop.mapred.OutputCollector,很简单,只是一个OutputCollector到IFile.Writer的Adapter,活都让IFile.Writer干了。

 

ValuesIterator用于从RawKeyValueIterator(Key,Value都是DataInputBuffer,ValuesIterator要求该输入已经排序)中获取符合RawComparator<KEY> comparator的值的迭代器。它在Task中有一个简单子类,CombineValuesIterator。

 

Task.TaskReporter用于向JobTracker提交计数器报告和状态报告,它实现了计数器报告Reporter和状态报告StatusReporter。为了不影响主线程的工作,TaskReporter有一个独立的线程,该线程通过TaskUmbilicalProtocol接口,利用Hadoop的RPC机制,向JobTracker报告Task执行情况。

 

FileSystemStatisticUpdater用于记录对文件系统的对/写操作字节数,是个简单的工具类。

2009-05-25

Hadoop源代码分析(类Task)

有了前面的基础,我们可以来分析类Task了。Task是一个虚基类,它有两个子类:MapTask,ReduceTask,分别对应着Map和Reduce。先从成员变量开始:

首先是和作业任务相关的信息,包括jobFile,作业的配置文件;taskId,任务ID,从中可以获取作业ID;partition,Job内ID;taskStatus,任务状态。jobCleanup,jobSetup和taskCleanup是三个标志位。

接下来是一组和错误回复的变量。我们知道,如果在Task执行过程中出错,很有可能是因为输入有问题,一个常用的策略是在下一次回复性执行过程中,忽略这部分输入,skipRanges,skipping和writeSkipRecs就是用来控制这个行为的。

currentRecStartIndex和currentRecIndexIterator配合,可以得到当前的任务输入。

conf保存了当前任务的配置(JobConf形式),MapOutputFile上一部分已经介绍了,用于管理临时文件,跟它配合的是lDirAlloc,类型为LocalDirAllocator,是本地文件分配器。jobContext和taskContext保持了Job和Task的上下文。committer定制了和Task生命周期相关的一些特殊处理(也可以看出是上下文)。

最后一部分应该是输出outputFormat。

和统计/状态监视的成员变量分散在类的各处,如spilledRecordsCounter,taskProgress,counters等,我们就不再介绍了。

下面我们开始来分析Task的成员函数,首先是虚方法,Task包含了下面3个虚方法:

    public abstract void run(JobConf job, TaskUmbilicalProtocol umbilical)

        throws IOException, ClassNotFoundException, InterruptedException;

执行Task;

    public abstract TaskRunner createRunner(TaskTracker tracker, 

           TaskTracker.TaskInProgress tip) throws IOException;

创建一个TaskRunner;

    public abstract boolean isMapTask();

是否是一个Map任务。上面这3个方法自然是和MapTask,ReduceTask相关,也需要它们实现。

构造函数很简单,主要是初始化一些成员函数。initialize也用于初始化成员,它被Task的子类调用,用于子类传入一些子类中构造的对象。构造函数后面是一系列的setter和getter,还有实现Writable的write和readFields。

localizeConfiguration函数用于将一些和Task相关的信息存放到JobConf里,这也是Hadoop MapReduce中重要的参数传递方式。

接下来分析的是一系列和Task生命周期相关的函数。

    public void done(TaskUmbilicalProtocol umbilical, TaskReporter reporter ) 

done被多个方法调用(下图),用于做结束任务的一些清理工作,步骤如下:

l           更新计数器updateCounters();

l           如果任务需要提交,设置Taks状态为COMMIT_PENDING,并利用TaskUmbilicalProtocol,汇报Task完成,等待提交;然后调用commit提交任务(下面分析)

l           设置任务结束标志位;结束Reporter通信线程;

l           发送最后一次统计报告(通过sendLastUpdate方法,很简单);

l           利用TaskUmbilicalProtocol报告结束状态(通过sendDone方法,很简单)。



 commit方法被done方法调用,用于等待TaskTracker的可提交信号。通过这种机制,Task可以等待TaskTracker上需要的一些后续处理,比方说,把Task的结果取走,需要TaskTracker的协调和确认。commit还会调用org.apache.hadoop.mapreduce.OutputCommitter的commitTask方法,执行一些子类需要的commit事件处理。

runJobCleanupTask,runJobSetupTask和runTaskCleanupTask应用在Maptask和ReduceTask的run方法中,用于做一些准备和可能的清除任务。

runJobSetupTask:为建立Job做准备,执行状态设置,然后调用org.apache.hadoop.mapreduce.OutputCommitter的setupJob,最后通过done,通知TaskTracker任务完成。

runJobCleanupTask:清理Job,包括步骤状态设置,更新状态到TaskTracker,调用org.apache.hadoop.mapreduce.OutputCommitter的相关方法,通过done,通知TaskTracker任务完成。

runTaskCleanupTask:清理Task任务,和runJobCleanupTask类似。

应该说,这些方法只是提供了一个通用的框架,具体需要的执行,在于org.apache.hadoop.mapreduce.OutputCommitter的具体实现。

 

2009-05-29

Hadoop源代码分析(MapTask)

接下来我们来分析Task的两个子类,MapTask和ReduceTask。MapTask的相关类图如下:



 

MapTask其实不是很复杂,复杂的是支持MapTask工作的一些辅助类。MapTask的成员变量少,只有split和splitClass。我们知道,Map的输入是split,是原始数据的一个切分,这个切分由org.apache.hadoop.mapred.InputSplit的子类具体描述(前面我们是通过org.apache.hadoop.mapreduce.InputSplit介绍了InputSplit,它们对外的API是一样的)。splitClass是InputSplit子类的类名,通过它,我们可以利用Java的反射机制,创建出InputSplit子类。而split是一个BytesWritable,它是InputSplit子类串行化以后的结果,再通过InputSplit子类的readFields方法,我们可以回复出对应的InputSplit对象。

MapTask最重要的方法是run。run方法相当简单,配置完系统的TaskReporter后,就根据情况执行runJobCleanupTask,runJobSetupTask,runTaskCleanupTask或执行Mapper。由于MapReduce现在有两套API,MapTask需要支持这两套API,使得MapTask执行Mapper分为runNewMapper和runOldMapper,run*Mapper后,MapTask会调用父类的done方法。

接下来我们来分析runOldMapper,最开始部分是构造Mapper处理的InputSplit,更新Task的配置,然后就开始创建Mapper的RecordReader,rawIn是原始输入,然后分正常(使用TrackedRecordReader,后面讨论)和跳过部分记录(使用SkippingRecordReader,后面讨论)两种情况,构造对应的真正输入in。

跳过部分记录是Map的一种出错恢复策略,我们知道,MapReduce处理的数据集合非常大,而有些任务对一部分出错的数据不进行处理,对结果的影响很小(如大数据集合的一些统计量),那么,一小部分的数据出错导致已处理的大量结果无效,是得不偿失的,跳过这部分记录,成了Mapper的一种选择。

Mapper的输出,是通过MapOutputCollector进行的,也分两种情况,如果没有Reducer,那么,用DirectMapOutputCollector(后面讨论),否则,用MapOutputBuffer(后面讨论)。

构造完Mapper的输入输出,通过构造配置文件中配置的MapRunnable,就可以执行Mapper了。目前系统有两个MapRunnable:MapRunner和MultithreadedMapRunner,如下图。



 

原有API在这块的处理上和新API有很大的不一样。接口MapRunnable是原有API中Mapper的执行器,run方法就是用于执行用户的Mapper。MapRunner是单线程执行器,相当简单,首先,当MapTask调用:

       MapRunnable<INKEY,INVALUE,OUTKEY,OUTVALUE> runner =

           ReflectionUtils.newInstance(job.getMapRunnerClass(), job);

MapRunner的configure会在newInstance的最后被调用,configure执行的过程中,对应的Mapper会通过反射机制构造出来。

MapRunner的run方法,会先创建对应的key,value对象,然后,对InputSplit的每一对<key,value>,调用Mapper的map方法,循环结束后,Mapper对应的清理方法会被调用。我们需要注意,key,value对象在run方法中是被重复使用的,就是说,每次传入Mapper的map方法的key,value都是同一个对象,只不过是里面的内容变了,对象并没有变。如果你需要保留key,value的内容,需要实现clone机制,克隆出对象的一个新备份。

相对于新API的多线程执行器,老API的MultithreadedMapRunner就比较复杂了,总体来说,就是通过阻塞队列配合Java的多线程执行器,将<key,value>分发到多个线程中去处理。需要注意的是,在这个过程中,这些线程共享一个Mapper实例,如果Mapper有共享的资源,需要有一定的保护机制。

runNewMapper用于执行新版本的Mapper,比runOldMapper稍微复杂,我们就不再讨论了。

2009-06-03

Hadoop源代码分析(MapTask辅助类 I)

MapTask的辅助类主要针对Mapper的输入和输出。首先我们来看MapTask中用的的Mapper输入,在类图中,这部分位于右上角。

MapTask.TrackedRecordReader是一个Wrapper,在原有输入RecordReader的基础上,添加了收集上报统计数据的功能。

MapTask.SkippingRecordReader也是一个Wrapper,它在MapTask.TrackedRecordReader的基础上,添加了忽略部分输入的功能。在分析MapTask.SkippingRecordReader之前,我们先看一下类SortedRanges和它相关的类。



 

类SortedRanges.Ranges表示了一个范围,以开始位置和范围长度(这样的话就可以表示长度为0的范围)来表示一个范围,并提供了一系列的范围操作方法。注意,方法getEndIndex得到的右端点并不包含在范围内(应理解为开区间)。SortedRanges包含了一系列不重叠的范围,为了保证包含的范围不重叠,在add方法和remove方法上需要做一些处理,保证不重叠的约束。SkipRangeIterator是访问SortedRanges包含的Ranges的迭代器。

MapTask.SkippingRecordReader的实现很简单,因为要忽略的输入都保持在SortedRanges.Ranges,只需要在next方法中,判断目前范围时候落在SortedRanges.Ranges中,如果是,忽略,并将忽略的记录写文件(可配置)

NewTrackingRecordReader和NewOutputCollector被新API使用,我们不分析。

MapTask的输出辅助类都继承自MapOutputCollector,它只是在OutputCollector的基础上添加了close和flush方法。

DirectMapOutputCollector用在Reducer的数目为0,就是不需要Reduce阶段的时候。它是直接通过

out = job.getOutputFormat().getRecordWriter(fs, job, finalName, reporter);

得到对应的RecordWriter,collect直接到RecordWriter上。

如果Mapper后续有reduce任务,系统会使用MapOutputBuffer做为输出,这是个比较复杂的类,有1k行左右的代码。

我们知道,Mapper是通过OutputCollector将Map的结果输出,输出的量很大,Hadoop的机制是通过一个circle buffer 收集Mapper的输出, 到了io.sort.mb * percent量的时候,就spill到disk,如下图。图中出现了两个数组和一个缓冲区,kvindices保持了记录所属的(Reduce)分区,key在缓冲区开始的位置和value在缓冲区开始的位置,通过kvindices,我们可以在缓冲区中找到对应的记录。kvoffets用于在缓冲区满的时候对kvindices的partition进行排序,排完序的结果将输出到输出到本地磁盘上,其中索引(kvindices)保持在spill{spill号}.out.index中,数据保存在spill{spill号}.out中。

 



 

当Mapper任务结束后,有可能会出现多个spill文件,这些文件会做一个归并排序,形成Mapper的一个输出(spill.out和spill.out.index),如下图:



 

这个输出是按partition排序的,这样的话,Mapper的输出被分段,Reducer要获取的就是spill.out中的一段。(注意,内存和硬盘上的索引结构不一样)

(感谢彭帅的Hadoop Map Stage流程分析 http://www.cnblogs.com/OnlyXP/archive/2009/05/25/1488811.html)

2009-06-04

Hadoop源代码分析(MapTask辅助类,II)

有了上面Mapper输出的内存存储结构和硬盘存储结构讨论,我们来仔细分析MapOutputBuffer的流程。

首先是成员变量。最先初始化的是作业配置job和统计功能reporter。通过配置,MapOutputBuffer可以获取本地文件系统(localFs和rfs),Reducer的数目和Partitioner。

SpillRecord是文件spill.out{spill号}.index在内存中的对应抽象(内存数据和文件数据就差最后的校验和),该文件保持了一系列的IndexRecord,如下图:


IndexRecord有3个字段,分别是startOffset:记录偏移量,rawLength:初始长度,partLength:实际长度(可能有压缩)。SpillRecord保持了一系列的IndexRecord,并提供方法用于添加记录(没有删除记录的操作,因为不需要),获取记录,写文件,读文件(通过构造函数)。

接下来是一些和输出缓存区kvbuffer,缓存区记录索引kvindices和缓存区记录索引排序工作数组kvoffsets相关的处理,下面的图有助于说明这段代码。



 

这部分依赖于3个配置参数,io.sort.spill.percent是kvbuffer,kvindices和kvoffsets的总大小(以M为单位,缺省是100,就是100M,这一部分是MapOutputBuffer中占用存储最多的)。io.sort.record.percent是kvindices和kvoffsets占用的空间比例(缺省是0.05)。前面的分析我们已经知道kvindices和kvoffsets,如果记录数是N的话,它占用的空间是4N*4bytes,根据这个关系和io.sort.record.percent的值,我们可以计算出kvindices和kvoffsets最多能有多少个记录,并分配相应的空间。参数io.sort.spill.percent指示当输出缓冲区或kvindices和kvoffsets记录数量到达对应的占用率的时候,会启动spill,将内存缓冲区的记录存放到硬盘上,softBufferLimit和softRecordLimit为对应的字节数。

值对<key, value>输出到缓冲区是通过Serializer串行化的,这部分的初始化跟在上面输出缓存后面。接下来是一些计数器和可能的数据压缩处理器的初始化,可能的Combiner和combiner工作的一些配置。

最后是启动spillThread,该Thread会检查内存中的输出缓存区,在满足一定条件的时候将缓冲区中的内容spill到硬盘上。这是一个标准的生产者-消费者模型,MapTask的collect方法是生产者,spillThread是消费者,它们之间同步是通过spillLock(ReentrantLock)和spillLock上的两个条件变量(spillDone和spillReady)完成的。

先看生产者,MapOutputBuffer.collect的主要流程是:

l           报告进度和参数检测(<K, V>符合Mapper的输出约定);

l           spillLock.lock(),进入临界区;

l           如果达到spill条件,设置变量并通过spillReady.signal(),通知spillThread;并等待spill结束(通过spillDone.await()等待);

l           spillLock.unlock();

l           输出key,value并更新kvindices和kvoffsets(注意,方法collect是synchronized,key和value各自输出,它们也会占用连续的输出缓冲区);

kvstart,kvend和kvindex三个变量在判断是否需要spill和spill是否结束的过程中很重要,kvstart是有效记录开始的下标,kvindex是下一个可做记录的位置,kvend的作用比较特殊,它在一般情况下kvstart==kvend,但开始spill的时候它会被赋值为kvindex的值,spill结束时,它的值会被赋给kvstart,这时候kvstart==kvend。这就是说,如果kvstart不等于kvend,系统正在spill,否则,kvstart==kvend,系统处于普通工作状态。其实在代码中,我们可以看到很多kvstart==kvend的判断。

下面我们分情况,讨论kvstart,kvend和kvindex的配合。初始化的时候,它们都被赋值0。



 

下图给出了一个没有spill的记录添加过程:



 

注意kvindex和kvnext的关系,取模实现了循环缓冲区

如果在添加记录的过程中,出现spill(多种条件),那么,主要的过程如下:



 

首先还是计算kvnext,主要,这个时候kvend==kvstart(图中没有画出来)。如果spill条件满足,那么,kvindex的值会赋给kvend(这是kvend不等于kvstart),从kvstart和kvend的大小关系,我们可以知道记录位于数组的那一部分(左边是kvstart<kvend的情况,右边是另外的情况)。Spill结束的时候,kvend值会被赋给kvstart, kvend==kvstart又重新满足,同时,我们可以发现kvindex在这个过程中没有变化,新的记录还是写在kvindex指向的位置,然后,kvindex=kvnect,kvindex移到下一个可用位置。

大家体会一下上面的过程,特别是kvstart,kvend和kvindex的配合,其实,<key,value>对输出使用的缓冲区,也有类似的过程。

Collect在处理<key,value>输出时,会处理一个MapBufferTooSmallException,这是value的串行化结果太大,不能一次放入缓冲区的指示,这种情况下我们需要调用spillSingleRecord,特殊处理。

2009-06-05

Hadoop源代码分析(MapTask辅助类,III)

接下来讨论的是key,value的输出,这部分比较复杂,不过有了前面kvstart,kvend和kvindex配合的分析,有利于我们理解这部分的代码。

输出缓冲区中,和kvstart,kvend和kvindex对应的是bufstart,bufend和bufmark。这部分还涉及到变量bufvoid,用于表明实际使用的缓冲区结尾(见后面BlockingBuffer.reset分析),和变量bufmark,用于标记记录的结尾。这部分代码需要bufmark,是因为key或value的输出是变长的,(前面元信息记录大小是常量,就不需要这样的变量)。

最好的情况是缓冲区没有翻转和value串行化结果很小,如下图:



 

先对key串行化,然后对value做串行化,临时变量keystart,valstart和valend分别记录了key结果的开始位置,value结果的开始位置和value结果的结束位置。

串行化过程中,往缓冲区写是最终调用了Buffer.write方法,我们后面再分析。

如果key串行化后出现bufindex < keystart,那么会调用BlockingBuffer的reset方法。原因是在spill的过程中需要对<key,value>排序,这种情况下,传递给RawComparator的必须是连续的二进制缓冲区,通过BlockingBuffer.reset方法,解决这个问题。下图解释了如何解决这个问题:

 



 

当发现key的串行化结果出现不连续的情况时,我们会把bufvoid设置为bufmark,见缓冲区开始部分往后挪,然后将原来位于bufmark到bufvoid出的结果,拷到缓冲区开始处,这样的话,key串行化的结果就连续存放在缓冲区的最开始处。

上面的调整有一个条件,就是bufstart前面的缓冲区能够放下整个key串行化的结果,如果不能,处理的方式是将bufindex置0,然后调用BlockingBuffer内部的out的write方法直接输出,这实际调用了Buffer.write方法,会启动spill过程,最终我们会成功写入key串行化的结果。

下面我们看write方法。key,value串行化过程中,往缓冲区写数据是最终调用了Buffer.write方法,又是一个复杂的方法。

l           do-while循环,直到我们有足够的空间可以写数据(包括缓冲区和kvindices和kvoffsets)

u      首先我们计算缓冲区连续写是否写满标志buffull和缓冲区非连续情况下有足够写空间标志wrap(这个实在拗口),见下面的讨论;条件(buffull && !wrap)用于判断目前有没有足够的写空间;

u      在spill没启动的情况下(kvstart == kvend),分两种情况,如果数组中有记录(kvend != kvindex),那么,根据需要(目前输出空间不足或记录数达到spill条件)启动spill过程;否则,如果空间还是不够(buffull && !wrap),表明这个记录非常大,以至于我们的内存缓冲区不能容下这么大的数据量,抛MapBufferTooSmallException异常;

u      如果空间不足同时spill在运行,等待spillDone;

l           写数据,注意,如果buffull,则写数据会不连续,则写满剩余缓冲区,然后设置bufindex=0,并从bufindex处接着写。否则,就是从bufindex处开始写。

下图给出了缓冲区连续写是否写满标志buffull和缓冲区非连续情况下有足够写空间标志wrap计算的几种可能:



 

情况1和情况2中,buffull判断为从bufindex到bufvoid是否有足够的空间容纳写的内容,wrap是图中白颜色部分的空间是否比输入大,如果是,wrap为true;情况3和情况4中,buffull判断bufindex到bufstart的空间是否满足条件,而wrap肯定是false。明显,条件(buffull && !wrap)满足时,目前的空间不够一次写。

接下来我们来看spillSingleRecord,只是用于写放不进内存缓冲区的<key,value>对。过程很流水,首先是创建SpillRecord记录,输出文件和IndexRecord记录,然后循环,构造SpillRecord并在恰当的时候输出记录(如下图),最后输出spill{n}.index文件。



 

前面我们提过spillThread,在这个系统中它是消费者,这个消费者相当简单,需要spill时调用函数sortAndSpill,进行spill。sortAndSpill和spillSingleRecord类似,函数的开始也是创建SpillRecord记录,输出文件和IndexRecord记录,然后,需要在kvoffsets上做排序,排完序后顺序访问kvoffsets,也就是按partition顺序访问记录。

按partition循环处理排完序的数组,如果没有combiner,则直接输出记录,否则,调用combineAndSpill,先做combin然后输出。循环的最后记录IndexRecord到SpillRecord。

sortAndSpill最后是输出spill{n}.index文件。

combineAndSpill比价简单,我们就不分析了。

BlockingBuffer中最后要分析的方法是flush方法。调用flush方法,意味着Mapper的结果都已经collect了,需要对缓冲区做一些最后的清理,并合并spill{n}文件产生最后的输出。

缓冲区处理部分很简单,先等待可能的spill过程完成,然后判断缓冲区是否为空,如果不是,则调用sortAndSpill,做最后的spill,然后结束spill线程。

flush合并spill{n}文件是通过mergeParts方法。如果Mapper最后只有一个spill{n}文件,简单修改该文件的文件名就可以。如果Mapper没有任何输出,那么我们需要创建哑输出(dummy files)。如果spill{n}文件多于1个,那么按partition循环处理所有文件,将处于处理partition的记录输出。处理partition的过程中可能还会再次调用combineAndSpill,最记录再做一次combination,其中还涉及到工具类Merger,我们就不再深入研究了。


  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值