作为普通程序员,我们该如何学习大模型(LLM)?

前言

原谅我的后知后觉,才开始从头写,我是已经上了一阶段大模型的课,也搜集了些资料,并自己做了小部分实践,回过头来,才想开始整理些文章。起初,大家都在写,都在发,我那会在焦虑 。

前排提示,文末有大模型AGI-CSDN独家资料包哦!

自chatgpt爆火以来,AI技术又被广泛关注,国内外各大厂商也纷纷布局,作为我们每一个普通人,也无不时刻感受着AI一波又一波的冲击。

尤其是作为程序员的我,相信绝大多数程序员也有和我一样的感受,从一开始的新奇,到焦虑,到试图去了解他,到去尝试,并致力于应用。

不管是IT行业人员还是非IT行业,都在不同程度的去了解、学习或者使用,作为程序员,在面对新的变革技术到来,更认识到,体系性的学习是理解和掌握它的必要途径,也是最便捷的方式。这样才能帮助我们体系的了解他,如何去拥抱变革,才能知道什么样的我会被替代,什么样的我是不会被替代的,也会减少自己的焦虑。

u=1637258234,1008009237&fm=253&fmt=auto&app=120&f=JPEG.webp

学习路线调研

在决心要开始体系性学习的时候,又面临一个问题,我该如何入手,又该按照什么路线和方向学习,自媒体的时代,公众号、各论坛的文章铺天盖地,很难让人捋出一个头绪。

我报了一个课,老师会有教学大纲,可实际上下课来,发现老师也是处于一个探索学习当中,尤其我印象深刻的在某一节课上课前,赶上gpt4 turbo,甚至当天的课的示例程序都跑步起来了。

在参照了老师的课程安排,又查阅了好多资料之后,我给自己梳理了一个学习规划,记录下来,希望对正在迷茫的童鞋能有用,当然如果有错误的地方,也请看到的大佬给出指正。

我自己的情况是这样的,普通本科,一直在java工程应用层面的编程、架构设计工作(俗称编写业务代码的程序员),同时会一些python,不深,平时当做工具语言来使用,学习大模型,想的还是用大模型来解决工程化和应用层面的问题。

在搜索资料之初,我看到过很多文章,如果你搜索“如何系统的学习大模型”,会看到很多类似的:

看到这种文章,起初我看了点,就全部略过了,看不懂,当然随着我的资料检索和学习,想体系化学习,明白这些知识肯定是必要的,但不是我现阶段必要的,他会让我上手很慢,并且把耐心给磨没。

我的整个思路还是:

whiteboard_exported_image(4).png

于是有了下面的具体学习思路

whiteboard_exported_image(5).png

我的写作计划(陆续更新,欢迎批评指正)

tips:随着我的学习和知识整理可能会有变化。

#基础篇

[LLM01-作为普通程序员,我们该如何学习大模型(LLM),学习路线和知识体系]

[LLM02-一文讲清楚,AI、AGI、AIGC与AIGC、NLP、LLM,ChatGPT等概念]

[LLM03-大模型提示工程(Prompt)(上篇),掌握Prompt原理与技巧,提高AI生成内容质量]

[LLM04-大模型提示工程(Prompt)(下篇),思维链和思维树的进阶]

[LLM05-大模型提示工程(Prompt),让LLM自己优化提示词]

[LLM07-OpenAI的API调用之初探,python调用GPT-API(交互式,支持多轮对话)]

[ ] 大模型08-大模型提示工程(Prompt),Prompt 攻击和防范、内容审核、用prompt调优prompt

#进阶篇

[LLM06-大模型之带你了解plugins、GPTs的前生今世,GPT-4 turbo何以让众多创业者一夜无眠,及主要应用:RAG、Agent]

[LLM09-大模型应用开发之业务架构和技术架构(从AI Embedded 到 Copilot,再到Agent)]

[LLM10-用Function Calling 连接大模型和业务,用自然语言连接系统的认知]

  • LLM11-软件开发中,我们如何进行AI编程,让AI成为我们的编程助手

  • LLM12-我的大模型实践–??

#高阶应用

[大模型之RAG系列,走进RAG以及它未来的发展趋势]

[大模型之RAG,LLM性能的提升,RAG与Fine-Tune我们该如何选择?]

[大模型应用RAG系列之从0搭建一个RAG,关键字检索的认识与实战(混合检索进阶储备)]

[大模型RAG,向量检索的原理与实战,与关键字检索的对比]

[大模型RAG,混合检索]

  • 大模型应用RAG系列(五)之混合增强策略:RAG + Fine-Tuning

  • [大模型系列之-OpenAI的Assistants API,一个开箱即用的RAG]

  • LLM15-大模型应用开发之Semantic Kernel

  • LLM16-大模型应用开发之LangChain

  • LLM17-大模型应用开发之LLM 应用开发工具链

  • LLM18-大模型应用开发之手撕 Agent 实现 AutoGPT

  • LLM19-我的大模型实践–??

#模型训练

  • LLM20-大模型应用开发之模型微调(Finetune)

  • LLM21-大模型应用开发之多模态大模型

  • LLM22-我的大模型实践–??

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值