去向前方的博客

No pain,No gain。

吴恩达 coursera ML 第八课总结+作业答案

前言 吴恩达的课程堪称经典,有必要总结一下。 学以致用,以学促用,通过笔记总结,巩固学习成果,复习新学的概念。 目录 文章目录前言目录正文反向传播算法前向传播过程反向传播算法图解实现技巧参数合一梯度检查参数随机初始化总结 正文 本节主要讨论,神经网络的误差函数。 神经网络图示 逻辑...

2019-04-25 21:25:42

阅读数 58

评论数 0

吴恩达 coursera ML 第七课总结+作业答案

前言 学以致用,以学促用,通过笔记总结,巩固学习成果,复习新学的概念。 目录 文章目录前言目录正文模型引入神经网络模型表示模型表示2例子和图示例子与图示2作业答案 正文 本节主要讨论神经网络及其强大的功能 模型引入 非线性分类问题会带来超多的参数,也就是参数爆炸这一问题。 一个典型的例子,计算机视...

2019-04-24 11:32:13

阅读数 26

评论数 0

吴恩达 coursera ML 第六课总结+作业答案

前言 学以致用,以学促用,通过笔记总结,巩固学习成果,复习新学的概念。 目录 文章目录前言目录正文问题引入正则化正则化逻辑回归作业答案 正文 本节主要探讨过拟合以及如何使用l2正则化抑制过拟合 问题引入 在使用面积预测房价这个问题上,如何选择模型的阶数? 过拟合的结局方案。 直观展示解决方法对模...

2019-04-24 10:38:38

阅读数 22

评论数 0

吴恩达 coursera ML 第五课总结+作业答案

前言 学以致用,以学促用,通过笔记总结,巩固学习成果,复习新学的概念。 目录 文章目录前言目录正文模型引入决策边界误差函数多分类问题作业答案 正文 本节学习内容主要为逻辑回归-分类。 模型引入 问题引入,收到一封邮件后,电脑如何自动判断将其归类为垃圾邮件,节约我们看邮件的时间。 例子,根据肿瘤尺寸...

2019-04-23 23:24:03

阅读数 52

评论数 0

吴恩达 coursera ML 第四课总结+作业答案

前言 学以致用,以学促用,通过笔记总结,巩固学习成果,复习新学的概念。 目录 文章 文章目录前言文章正文模型引入多元梯度下降技巧1 特征压缩梯度下降2:学习率多项式回归补充内容 正文 本节学习内容主要为多元线性回归 模型引入 引入问题,上次那个一元线性回归模型还是过于简略,并不符合...

2019-04-23 21:47:04

阅读数 46

评论数 0

吴恩达 coursera ML 第三课总结

前言 学以致用,以学促用,通过笔记总结,巩固学习成果,复习新学的概念。 目录 文章目录前言目录正文矩阵和向量 正文 本节学习内容主要为复习线性代数 矩阵和向量 ## 矩阵运算 ## 标量乘法 ## 矩阵乘法 ##矩阵相乘 ## 注意细节 ## 单位矩阵 ## 矩阵求逆 ## 矩阵转置 ...

2019-04-22 21:14:10

阅读数 61

评论数 0

吴恩达 coursera ML 第二课总结+作业答案

前言 学以致用,以学促用,通过笔记总结,巩固学习成果,复习新学的概念。 目录 文章目录前言目录正文线性模型模型判断准则损失函数解析损失函数解析2梯度下降梯度下降解析应用梯度下降的线性模型术语补充编程作业ex1.mcomputeCost.mfeatureNormalize.mgradientDesc...

2019-04-22 16:25:42

阅读数 58

评论数 1

吴恩达 coursera ML 第一课总结

前言 学以致用,以学促用,通过笔记总结,巩固学习成果,复习新学的概念。 目录 文章目录前言目录正文无监督学习总结 正文 基础材料都来自公开的课件。 第一堂课主要是简短的介绍了一下机器学习的相关概念。 ## 序言 ## 机器学习定义 ## 机器学习分类 ## 监督学习 例子1 通过已知的面积和房价...

2019-04-22 11:18:52

阅读数 56

评论数 0

机器学习:分类器介绍

目录 [@TOC] 一 softmax 简介 计算loss时,预测值要与真实值分布在相同的数据区间内,例如真实值在[0,1]区间内,那么神经网络的预测值最好也要在相同的区间(0,1)内;这样在计算loss是才会有较好的效果。 在做二分类时,可在网络的输出层使用激活函数sigmoid(),将...

2019-03-18 19:50:54

阅读数 58

评论数 0

机器学习笔记GBDT(一):原理

目录 文章目录目录前言1. GBDT概述2. GBDT的负梯度拟合3. GBDT回归算法1) 初始化弱学习器2) 对于迭代轮数t=1,2,...,T有:3) 得到强学习器f(x)的表达式:4. GBDT分类算法4.1 二元GBDT分类算法4.2 多元GBDT分类算法5. GBDT常用损失函数6. ...

2019-03-18 16:02:44

阅读数 542

评论数 0

自然语言处理笔记7-哈工大 关毅

目录 文章目录目录前言句法分析技术1句法分析技术2句法分析技术3句法分析技术4 前言 硕士生涯结束,开始专心做一件自己觉得有用的工具,先做工程,后搞理论。 自然语言处理是一个非常难的问题,同时是人工智能皇冠上的明珠。 接下来会记录一系列自然语言处理的笔记,来自于哈工大老师关毅。 句法分析技术1 基...

2019-01-13 11:02:38

阅读数 117

评论数 0

自然语言处理笔记3-哈工大 关毅

目录 文章目录目录前言汉语的分词与频度统计(1)汉语词汇的特点汉语的分词与频度统计(2)汉语的分词与频度统计(3)汉语的分词与频度统计(4)汉语的分词与频度统计(5)汉语的分词与频度统计(6)汉语的分词与频度统计(7) 前言 硕士生涯结束,开始专心做一件自己觉得有用的工具,先做工程,后搞理论。 自...

2018-12-12 21:07:14

阅读数 185

评论数 0

matlab 层次聚类

MATLAB的统计工具箱中的多元统计分析中提供了聚类分析的两种方法: 1.层次聚类 hierarchical clustering 2.k-means聚类 这里用最简单的实例说明以下层次聚类原理和应用发法。 层次聚类是基于距离的聚类方法,MATLAB中通过pdist、linkage、dendrog...

2018-12-10 20:07:11

阅读数 635

评论数 0

机器学习导论(张志华):概率PCA

前言 这个笔记是北大那位老师课程的学习笔记,讲的概念浅显易懂,非常有利于我们掌握基本的概念,从而掌握相关的技术。 basic concepts PCA:XTHHXX^THHX XTHHX PCO:HXXH=HkXPCO :HXXH=HkXPCO:HXXH=HkX Duality:KPCA; 通过增...

2018-11-04 20:48:36

阅读数 199

评论数 0

机器学习导论(张志华):EM算法

#前言 这个笔记是北大那位老师课程的学习笔记,讲的概念浅显易懂,非常有利于我们掌握基本的概念,从而掌握相关的技术。 #basic concepts EM算法的核心是,首先假设模型符合什么分布,然后计算相关参数,再根据计算出的结果,重新划分样本分布,然后再计算相关参数,直到收敛为止。 公式证明比较繁...

2018-11-01 14:57:29

阅读数 76

评论数 0

Matlab:精度控制

#前言 在进行精细计算的时候,之前没有考虑到的一些问题也就冒了出来,计算机内部数据毕竟是离散存储的,不可能像手推公式时那样,纯理论实数域运算。 #正文 MATLAB中控制运算精度 : format long 只能设置显示精度,并不能控制运算精度。 在MATLAB中,控制运算精度一般使用 digit...

2018-10-07 20:39:09

阅读数 434

评论数 0

机器学习导论(张志华):主元分析

前言 这个笔记是北大那位老师课程的学习笔记,讲的概念浅显易懂,非常有利于我们掌握基本的概念,从而掌握相关的技术。 basic concepts exp(−tz12)=∫exp(−tuz)dF(u)exp(-tz^{\frac{1}{2}}) =\int exp(-tuz) dF(u)exp(−tz...

2018-10-02 08:54:25

阅读数 332

评论数 0

奇异值分解讨论及其实现的计算步骤

前言 在看一个教程的发现对奇异值分解不太熟悉,因此从新搜索了相关资料,然后,总结成这个咯。 一般来说,想要获得低维的子空间,最简单的是对原始的高维空间进行线性变换(当然了,非线性也是可以的,如加入核函数,比较著名的就是KPCA)。SVD和PCA呢,都实现了降维与重构,但是呢,思路不太一样,老师课上...

2018-10-01 20:54:05

阅读数 3099

评论数 0

时间序列分析相关概念

1. 在时间序列分析中, 数学模型是什么?数学公式又是什么?数学推导过程又是什么?… … 一句话:用数学公式后者符号来表示现实存在的意义。数学是“万金油”的科学,它是作为工作和分析方法运用到某个学科当中。比如在物理学中,数学公式或者数学符号也是表示现实存在的意义,G表示重力,再比如用什么表示分子...

2018-10-01 20:24:18

阅读数 414

评论数 0

机器学习导论(张志华):正定核应用

前言 这个笔记是北大那位老师课程的学习笔记,讲的概念浅显易懂,非常有利于我们掌握基本的概念,从而掌握相关的技术。 basic concepts If a function is positive definite,then matrix is P.S.D. x1,,,,xn⊂X=&amp...

2018-09-30 20:41:36

阅读数 115

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭