去向前方的博客

No pain,No gain。

现代谱估计:Blackman-Tukey 相关图

因为课题需要,开始了谱估计的学习之路,但上网一搜发现没有啥中文资料,为了方便后来人,写下此系列文档。
本文翻译自kspectra tool theory

理论

Blackman-Tukey 相关图 和 互谱

相关图通过使用加窗傅里叶变换实现对一个时间序列自相关函数的谱估计
在1958年,Blackman和Tukey发明了该项技术,该项技术的基础是Wiener-Khinchin理论,该理论揭示了一个如下的关系:

如果一个时间序列x(t)的傅里叶变换是X(f),同时该时间序列的自相关函数是R,那么R的傅里叶变换是Px(f)=|X(f)|^2,或者说是x(t)的功率谱。

这种方式的功率谱估计方法叫做相关图法,该工具箱里面还有一个可选的方法叫做周期图法(以后再讲)。
相关图法和周期图法常常被用在权值处理后的时间序列或者自相关函数(这样做可以减少频谱泄露-(在真实的峰频率周围估计出的异常高能谱))
Press 等(1989,pp,423-424)提到

当我们选择使用N个点做周期图估计的时候,我们实际上相当于对频谱乘了一个无限长的。。数据。。通过时域的一个窗函数,该函数的特点是除了采样时间【N dt】其他时刻都为零,同时在采样的时间里面它都是1.
这个窗函数尖锐的边缘使得它在高频有相当高的能量,这一点给予了被加窗的信号同时导致了谱泄露。

这一点对相关图法同样成立。对数据或者相关函数通过不同的锥形窗(中心能量高,边缘能量衰减快)进行加权处理,是一个传统且广受认可的减少谱泄露的方法。

In the Blackman-Tukey approach PX(f) is estimated by

谱估计

其中 rk是k阶延迟自相关估计的系数 M是最大可以获得延迟量和窗的宽度,wk是加窗函数,该工具箱包含了以下几个可选的窗:Bartlett(三角窗),Hamming(余弦窗)hanning(轻微改变的余弦窗)也可以不加。

在使用过程中,你可能发现宽度相同的情况下窗的种类对结果影响不大。
因为窗的宽度是更重要的参数。时间序列加窗处理伴随的对信号的平均会减少该方法的分辨率,频率间隔从1/N变到加窗后的1/M(e.g,Kay 1988 p.81).因此,更宽的窗意味着更高的谱分辨率。
然而,这里有一个需要权衡的选择:高分辨率还是低的谱估计方差。考虑一个极限的情况,一个等长(M=N)直接应用FFT变换一个未加窗的数据会导致一个估计理论标准差为等价于在每个频率点直接估计的相关图,无论对时间序列采样多少次(Press et al,1989,p,423).
对很多短的数据窗处理过的时间序列或者自相关函数进行平均可以有效地提升估计时的独立样本数,因此减少了估计的方差。kay(1988,section 4.5).展示了通过加窗相关图功率谱估计的每个频率点的方差是估计的功率方差的2M/3N倍。
因此,这里有一个更窄的窗可以被用来平滑功率谱和减少估计得采样方差。
经过实践,Kay(1988)推荐窗应该不要超过原始数据点的1/5或者1/10(为了获得理想的减小估计方差),同时也不应该太小(为了保持区分两个接近频率和获得想要的谱泄露减少的能力)。
blackman-Tukey功率谱的理论方差估计方法这里有,同时工具箱也提供了由它们构成的误差棒。
它们既可以被当作估计本身画出来,也可以当作一个红噪声的不确定间隔。在后一种情况下,一个 AR(1)过程会被用来拟合该数据,同时误差棒会在理论AR(1)谱的中心。
作为一个传统的方法,相关图被扩展成提供一个熟悉的标准作为对该工具箱里其他现代谱估计方法的评判依据。

阅读更多
文章标签: 谱估计 Blackman tukey
个人分类: 谱估计
想对作者说点什么? 我来说一句

现代谱估计 matlab程序

2013年10月23日 6KB 下载

现代谱估计

2008年02月19日 6.28MB 下载

现代谱估计方法

2008年02月19日 3.05MB 下载

没有更多推荐了,返回首页

不良信息举报

现代谱估计:Blackman-Tukey 相关图

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭