bzoj3595: [Scoi2014]方伯伯的Oj 平衡树Splay

bzoj3595: [Scoi2014]方伯伯的Oj

Description

方伯伯正在做他的Oj。现在他在处理Oj上的用户排名问题。
Oj上注册了n个用户,编号为1~”,一开始他们按照编号排名。方伯伯会按照心情对这些用户做以下四种操作,修改用户的排名和编号:
1.操作格式为1 x y,意味着将编号为z的用户编号改为V,而排名不变,执行完该操作后需要输出该用户在队列中的位置,数据保证x必然出现在队列中,同时1,是一个当前不在排名中的编号。
2.操作格式为2 x,意味着将编号为x的用户的排名提升到第一位,执行完该操作后需要输出执行该操作前编号为z用户的排名。
3.操作格式为3 x,意味着将编号为z的用户的排名降到最后一位,执行完该操作后需要输出执行该操作前编号为z用户的排名。
4.操作格式为4 k,意味着查询当前排名为足的用户编号,执行完该操作后需要输出当前操作用户的编号。
但同时为了防止别人监听自己的工作,方伯伯对他的操作进行了加密,即将四种操作的格式分别改为了:
1 x+a y+a
2 x+a
3 x+a
4 k+a
其中a为上一次操作得到的输出,一开始a=0。
例如:
上一次操作得到的输出是5
这一次操作的输入为:1 13 15
因为这个输入是经过加密后的,所以你应该处理的操作是1 8 10
现在你截获丁方伯伯的所有操作,希望你能给出结果。

Input

输入的第1行包含2个用空格分隔的整数n和m,表示初始用户数和操作数。
此后有m行,每行是一个询问,询问格式如上所示。

Output

输出包含m行。每行包含一个整数,其中第i行的整数表示第i个操作的输出。

Sample Input

10 10
1 2 11
3 13
25
37
28
2 10
2 11
3 14
2 18
4 9

Sample Output

2
2
2
4
3
5
5
7
8
11

HINT

对于 100% 的数据,1 ≤ n ≤ 10^8,1 ≤ m ≤ 10^5
输入保证对于所有的操作 1,2,3,x 必然已经出现在队列中,同时对于所有操作 1,1 ≤ y ≤ 2 × 10^8,并且
y 没有出现在队列中。
对于所有操作 4,保证 1 ≤ k ≤ n。

分析

比较新奇的一道平衡树的题。
我们一步一步分析。
柿子挑软的捏。首先考虑修改编号的操作。其实只是一个幌子。只需要用map记录一下对应的平衡树上的节点即可。(如果没有修改编号的节点,其编号就是它本身)
这题的难点在于节点的个数很多,操作很少。所以有一种神奇的方法,就是Splay中的一个节点维护若干个不相交的位置区间,并以排名为关键字,保证一个区间内的排名是有序的,并且各个区间的排名也是有序的。而后,对于一个区间内的操作,由于仅仅涉及到一个点,故我们把这个区间拆成2个或3ge区间(点在头尾拆2个,中间拆3个),重新插入Splay中即可。这样的话,复杂度就是 O(mlogm) O ( m l o g m ) 级别的了。
区间排名可以采用区间的第一个数的排名(也就是最小值)。
改变排名的话,我们给每个节点一个权值,初始即排名,我们拆区间,然后把这个点的单独权值变成最小权值-1或最大权值+1即可。
再重新考虑编号的改变。如果一个节点编号改变,我们将这个节点拆成单独的区间,用map记录这个节点在平衡树中的权值。查询的时候查找这个节点对应的编号的权值在平衡树中的位置。
同时对于多节点区间,其编号一定没有改变,可以在区间上查找排名。单节点区间直接输出编号即可。
算是一道中高难度的Splay的题了。

代码

#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<map>
using namespace std;
const int N = 300005;
int read() {
    char ch = getchar(); int x = 0, f = 1;
    for(;ch < '0' || ch > '9'; ch = getchar()) if(ch == '-') f = -1;
    for(;ch >= '0' && ch <= '9'; ch = getchar()) x = (x << 1) + (x << 3) + ch - '0';
    return x * f;
}
int n, Q, a, mi, mx, sz, rt, R[N], L[N], id[N], fa[N], siz[N], ch[N][2];
map<int, int>m;
int wh(int p) {return ch[fa[p]][1] == p;}
void Update(int p) {siz[p] = siz[ch[p][0]] + siz[ch[p][1]] + R[p] - L[p] + 1;}
void Rotate(int p) {
    int f = fa[p], g = fa[f], c = wh(p);
    if(g) ch[g][wh(f)] = p; fa[p] = g;
    ch[f][c] = ch[p][c ^ 1]; if(ch[f][c]) fa[ch[f][c]] = f;
    ch[p][c ^ 1] = f; fa[f] = p; 
    Update(f);
}
void Splay(int p, int tar) {
    for(;fa[p] != tar; Rotate(p))
        if(fa[fa[p]] != tar) Rotate(wh(p) == wh(fa[p]) ? fa[p] : p);
    Update(p);
    if(!tar) rt = p;
}

void Init(int p, int l, int r, int f, int idx) {
    L[p] = l; R[p] = r; fa[p] = f; id[p] = idx; siz[p] = r - l + 1;
}
void Ins(int p, int l, int r, int idx) {
    if(l > r) return;
    if(!p) return Init(rt = ++sz, l, r, 0, idx);
    while(p) {
        int &u = ch[p][l > R[p]];
        if(!u) {Init(u = ++sz, l, r, p, idx); Splay(u, 0); break;}
        p = u;
    }
}

void Del(int v) {
    int p = rt, u;
    if(!ch[p][1]) fa[rt = ch[p][0]] = 0; 
    else {
        for(u = ch[rt][1]; ch[u][0];u = ch[u][0]) ;
        Splay(u, rt); int p = rt; fa[rt = u] = 0;
        if(ch[p][0]) ch[u][0] = ch[p][0], fa[ch[p][0]] = u;
        Update(u);
    }
    Ins(rt, L[p], v - 1, L[p]); Ins(rt, v + 1, R[p], v + 1);
}
void Find(int v) {
    int p; for(p = rt;v < L[p] || v > R[p]; p = ch[p][v > R[p]]) ; Splay(p, 0);
}
void Upd(int x, int y) {
    int v = m[x]; if(!v) v = x; Find(v);
    printf("%d\n", (a = siz[ch[rt][0]] + (v - L[rt] + 1)));
    if(L[rt] == R[rt]) id[rt] = y;
    else Del(v), Ins(rt, v, v, y);
    m[x] = 0; m[y] = v;
}
void Rev(int x, int opt) {
    int v = m[x]; if(!v) v = x; Find(v);
    printf("%d\n", (a = siz[ch[rt][0]] + (v - L[rt] + 1)));
    Del(v); v = m[x] = (opt == 2 ? --mi : ++mx);
    Ins(rt, v, v, x);
}
int Kth(int k) {
    for(int p = rt;;) {
        if(k > siz[ch[p][0]] && k <= siz[p] - siz[ch[p][1]]) {
            if(L[p] == R[p]) return id[p];
            else return L[p] + k - siz[ch[p][0]] - 1;
        }
        if(k <= siz[ch[p][0]]) p = ch[p][0];
        else {
            k -= (siz[p] - siz[ch[p][1]]);
            p = ch[p][1];
        }
    }
}

int main() {
    n = read(); Q = read();
    mx = n, mi = 0; Ins(rt, 1, n, 1);
    while(Q--) {
        int opt = read(), x = read() - a;
        if(opt == 1) Upd(x, read() - a);
        else if(opt < 4) Rev(x, opt);
        else printf("%d\n", a = Kth(x));
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值