龙思

你在等什么?

[转载] 约瑟夫问题的数学方法(O(n))
tashj @ 2006-07-19 22:12

发信人: goodhorsezxj (Eyes of Moon), 信区: ACM
 : zz)[转载] 约瑟夫问题的数学方法(O(n))
发信站: 天大求实BBS (Tue Jun 13 17:19:13 2006), 本站(bbs.tju.edu.cn)

发信人: kelefe (混沌中立), 信区: ACMICPC
 : 【合集】[转载] 约瑟夫问题的数学方法(O(n))
发信站: 逸仙时空 Yat-sen Channel (Tue Jun  6 16:40:57 2006), 站内信件

──── yanjunwei (Sat Jun  3 21:22:00 2006)   ───────────

以下文字转载自 yanjunwei 的信箱
原文由 yanjunwei 所发表

约瑟夫问题的数学方法
[ 2006-5-5 14:26:00 | By: lower ]
 
看到这个想起了去年的省赛上,我们就是被一个约瑟夫问题的变种搞的几乎发狂了,一直是WA,出了赛场才发现并
不是真正的约瑟夫问题。

对于约瑟夫问题,今天看到了一篇好帖子,是用数学方法处理的,感觉还不错的

无论是用链表实现还是用数组实现都有一个共同点:要模拟整个游戏过程,不仅程序写起来比较烦,而且时间复杂
度高达O(nm),当nm非常大(例如上百万,上千万)的时候,几乎是没有办法在短时间内出结果的。

为了讨论方便,先把问题稍微改变一下,并不影响原意:

问题描述:n个人(编号0~(n-1)),从0开始报数,报到(m-1)的退出,剩下的人继续从0开始报数。求胜利者的编号


我们知道第一个人(编号一定是m%n-1) 出列之后,剩下的n-1个人组成了一个新的约瑟夫环(以编号为k=m%n的人开
始):
  k  k+1  k+2  ... n-2, n-1, 0, 1, 2, ... k-2
并且从k开始报0

现在我们把他们的编号做一下转换:
k     --> 0
k+1   --> 1
k+2   --> 2
...
...
k-2   --> n-2
k-1   --> n-1

变换后就完完全全成为了(n-1)个人报数的子问题,假如我们知道这个子问题的解:例如x是最终的胜利者,那么根
据上面这个表把这个x变回去不刚好就是n个人情况的解吗?!!变回去的公式很简单,相信大家都可以推出来:x'
=(x+k)%n

如何知道(n-1)个人报数的问题的解?对,只要知道(n-2)个人的解就行了。(n-2)个人的解呢?当然是先求(n-3)
情况 ---- 这显然就是一个倒推问题!好了,思路出来了,下面写递推公式:

f[i]表示i个人玩游戏报m退出最后胜利者的编号,最后的结果自然是f[n]

递推公式
f[1]=0;
f[i]=(f[i-1]+m)%i;  (i>1)

有了这个公式,我们要做的就是从1-n顺序算出f[i]的数值,最后结果是f[n]。因为实际生活中编号总是从1开始,
我们输出f[n]+1

由于是逐级递推,不需要保存每个f[i],程序也是异常简单:

include <stdio.h>

main()
{
  int n, m, i, s=0;
  printf ("N M = "); scanf("%d%d", &n, &m);
  for (i=2; i<=n; i++) s=(s+m)%i;
  printf ("The winner is %d/n", s+1);
}

这个算法的时间复杂度为O(n),相对于模拟算法已经有了很大的提高。算nm等于一百万,一千万的情况不是问题
了。
 
阅读更多
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

不良信息举报

[转载] 约瑟夫问题的数学方法(O(n))

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭